Malware classification by using deep learning framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63544418" target="_blank" >RIV/70883521:28140/21:63544418 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-62324-1_8" target="_blank" >http://dx.doi.org/10.1007/978-3-030-62324-1_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-62324-1_8" target="_blank" >10.1007/978-3-030-62324-1_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Malware classification by using deep learning framework
Popis výsledku v původním jazyce
In this paper, we propose an original deep learning framework for malware classifying based on the malware behavior data. Currently, machine learning techniques are becoming popular for classifying malware. However, most of the existing machine learning methods for malware classifying use shallow learning algorithms such as Support Vector Machine, decision trees, Random Forest, and Naive Bayes. Recently, a deep learning approach has shown superior performance compared to traditional machine learning algorithms, especially in tasks such as image classification. In this paper we present the approach, in which malware binaries are converted to a grayscale image. Specifically, data in the raw form are converted into a 2D decimal valued matrix to represent an image. We propose here an original DNN architecture with deep denoising Autoencoder for feature compression, since the autoencoder is much more advantageous due to the ability to model complex nonlinear functions compared to principal component analysis (PCA) which is restricted to a linear map. The compressed malware features are then classified with a deep neural network. Preliminary test results are quite promising, with 96% classification accuracy on a malware database of 6000 samples with six different families of malware compared to SVM and Random Forest algorithms. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Malware classification by using deep learning framework
Popis výsledku anglicky
In this paper, we propose an original deep learning framework for malware classifying based on the malware behavior data. Currently, machine learning techniques are becoming popular for classifying malware. However, most of the existing machine learning methods for malware classifying use shallow learning algorithms such as Support Vector Machine, decision trees, Random Forest, and Naive Bayes. Recently, a deep learning approach has shown superior performance compared to traditional machine learning algorithms, especially in tasks such as image classification. In this paper we present the approach, in which malware binaries are converted to a grayscale image. Specifically, data in the raw form are converted into a 2D decimal valued matrix to represent an image. We propose here an original DNN architecture with deep denoising Autoencoder for feature compression, since the autoencoder is much more advantageous due to the ability to model complex nonlinear functions compared to principal component analysis (PCA) which is restricted to a linear map. The compressed malware features are then classified with a deep neural network. Preliminary test results are quite promising, with 96% classification accuracy on a malware database of 6000 samples with six different families of malware compared to SVM and Random Forest algorithms. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing
ISBN
978-303062323-4
ISSN
21945357
e-ISSN
—
Počet stran výsledku
9
Strana od-do
84-92
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Da Nang City
Datum konání akce
27. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—