Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Android Malware Detection Using Genetic Algorithm based Optimized Feature Selection and Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU133990" target="_blank" >RIV/00216305:26220/19:PU133990 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8769039" target="_blank" >https://ieeexplore.ieee.org/document/8769039</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2019.8769039" target="_blank" >10.1109/TSP.2019.8769039</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Android Malware Detection Using Genetic Algorithm based Optimized Feature Selection and Machine Learning

  • Popis výsledku v původním jazyce

    Android platform due to open source characteristic and Google backing has the largest global market share. Being the world's most popular operating system, it has drawn the attention of cyber criminals operating particularly through wide distribution of malicious applications. This paper proposes an effectual machine-learning based approach for Android Malware Detection making use of evolutionary Genetic algorithm for discriminatory feature selection. Selected features from Genetic algorithm are used to train machine learning classifiers and their capability in identification of Malware before and after feature selection is compared. The experimentation results validate that Genetic algorithm gives most optimized feature subset helping in reduction of feature dimension to less than half of the original feature-set. Classification accuracy of more than 94% is maintained post feature selection for the machine learning based classifiers, while working on much reduced feature dimension, thereby, having a positive impact on computational complexity of learning classifiers.

  • Název v anglickém jazyce

    Android Malware Detection Using Genetic Algorithm based Optimized Feature Selection and Machine Learning

  • Popis výsledku anglicky

    Android platform due to open source characteristic and Google backing has the largest global market share. Being the world's most popular operating system, it has drawn the attention of cyber criminals operating particularly through wide distribution of malicious applications. This paper proposes an effectual machine-learning based approach for Android Malware Detection making use of evolutionary Genetic algorithm for discriminatory feature selection. Selected features from Genetic algorithm are used to train machine learning classifiers and their capability in identification of Malware before and after feature selection is compared. The experimentation results validate that Genetic algorithm gives most optimized feature subset helping in reduction of feature dimension to less than half of the original feature-set. Classification accuracy of more than 94% is maintained post feature selection for the machine learning based classifiers, while working on much reduced feature dimension, thereby, having a positive impact on computational complexity of learning classifiers.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2019 42nd International Conference on Telecommunications and Signal Processing (TSP)

  • ISBN

    978-1-7281-1864-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    220-223

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Místo konání akce

    Budapest, Hungary

  • Datum konání akce

    1. 7. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000493442800048