How current optical music recognition systems are becoming useful for digital libraries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390148" target="_blank" >RIV/00216208:11320/18:10390148 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11210/18:10390148
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?id=3273034" target="_blank" >https://dl.acm.org/citation.cfm?id=3273034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3273024.3273034" target="_blank" >10.1145/3273024.3273034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How current optical music recognition systems are becoming useful for digital libraries
Popis výsledku v původním jazyce
Optical Music Recognition (OMR) promises to make large collections of sheet music searchable by their musical content. It would open up novel ways of accessing the vast amount of written music that has never been recorded before. For a long time, OMR was not living up to that promise, as its performance was simply not good enough, especially on handwritten music or under non-ideal image conditions. However, OMR has recently seen a number of improvements, mainly due to the advances in machine learning. In this work, we take an OMR system based on the traditional pipeline and an end-to-end system, which represent the current state of the art, and illustrate in proof-of-concept experiments their applicability in retrieval settings. We also provide an example of a musicological study that can be replicated with OMR outputs at much lower costs. Taken together, this indicates that in some settings, current OMR can be used as a general tool for enriching digital libraries.
Název v anglickém jazyce
How current optical music recognition systems are becoming useful for digital libraries
Popis výsledku anglicky
Optical Music Recognition (OMR) promises to make large collections of sheet music searchable by their musical content. It would open up novel ways of accessing the vast amount of written music that has never been recorded before. For a long time, OMR was not living up to that promise, as its performance was simply not good enough, especially on handwritten music or under non-ideal image conditions. However, OMR has recently seen a number of improvements, mainly due to the advances in machine learning. In this work, we take an OMR system based on the traditional pipeline and an end-to-end system, which represent the current state of the art, and illustrate in proof-of-concept experiments their applicability in retrieval settings. We also provide an example of a musicological study that can be replicated with OMR outputs at much lower costs. Taken together, this indicates that in some settings, current OMR can be used as a general tool for enriching digital libraries.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 5th International Conference on Digital Libraries for Musicology
ISBN
978-1-4503-6522-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
57-61
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Paris, France
Datum konání akce
28. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—