Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390168" target="_blank" >RIV/00216208:11320/18:10390168 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.nuclphysb.2018.06.019" target="_blank" >https://doi.org/10.1016/j.nuclphysb.2018.06.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nuclphysb.2018.06.019" target="_blank" >10.1016/j.nuclphysb.2018.06.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes
Popis výsledku v původním jazyce
In this paper we explicitly demonstrate separability of the Maxwell equations in a wide class of higher-dimensional metrics which include the Kerr-NUT-(A)dS solution as a special case. Namely, we prove such separability for the most general metric admitting the principal tensor (a non-degenerate closed conformal Killing-Yano 2-form). To this purpose we use a special ansatz for the electromagnetic potential, which we represent as a product of a (rank 2) polarization tensor with the gradient of a potential function, generalizing the ansatz recently proposed by Lunin. We show that for a special choice of the polarization tensor written in terms of the principal tensor, both the Lorenz gauge condition and the Maxwell equations reduce to a composition of mutually commuting operators acting on the potential function. A solution to both these equations can be written in terms of an eigenfunction of these commuting operators. When incorporating a multiplicative separation ansatz, it turns out that the eigenvalue equations reduce to a set of separated ordinary differential equations with the eigenvalues playing a role of separability constants. The remaining ambiguity in the separated equations is related to an identification of D - 2 polarizations of the electromagnetic field. We thus obtained a sufficiently rich set of solutions for the Maxwell equations in these spacetimes. (C) 2018 The Authors. Published by Elsevier B.V.
Název v anglickém jazyce
Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes
Popis výsledku anglicky
In this paper we explicitly demonstrate separability of the Maxwell equations in a wide class of higher-dimensional metrics which include the Kerr-NUT-(A)dS solution as a special case. Namely, we prove such separability for the most general metric admitting the principal tensor (a non-degenerate closed conformal Killing-Yano 2-form). To this purpose we use a special ansatz for the electromagnetic potential, which we represent as a product of a (rank 2) polarization tensor with the gradient of a potential function, generalizing the ansatz recently proposed by Lunin. We show that for a special choice of the polarization tensor written in terms of the principal tensor, both the Lorenz gauge condition and the Maxwell equations reduce to a composition of mutually commuting operators acting on the potential function. A solution to both these equations can be written in terms of an eigenfunction of these commuting operators. When incorporating a multiplicative separation ansatz, it turns out that the eigenvalue equations reduce to a set of separated ordinary differential equations with the eigenvalues playing a role of separability constants. The remaining ambiguity in the separated equations is related to an identification of D - 2 polarizations of the electromagnetic field. We thus obtained a sufficiently rich set of solutions for the Maxwell equations in these spacetimes. (C) 2018 The Authors. Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01625S" target="_blank" >GA17-01625S: Prostoročasy a pole v Einsteinově teorii gravitace a jejích zobecněních</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Physics B
ISSN
0550-3213
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
934
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
32
Strana od-do
7-38
Kód UT WoS článku
000445497400002
EID výsledku v databázi Scopus
2-s2.0-85049460490