On ordered Ramsey numbers of bounded-degree graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10384907" target="_blank" >RIV/00216208:11320/19:10384907 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X2u0qdc0Zh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X2u0qdc0Zh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jctb.2018.06.002" target="_blank" >10.1016/j.jctb.2018.06.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On ordered Ramsey numbers of bounded-degree graphs
Popis výsledku v původním jazyce
An ordered graph is a pair G=(H,<) where H is a graph and < is a total ordering of its vertices. The ordered Ramsey number R(G) is the minimum number N such that every 2-coloring of the edges of the ordered complete graph on N vertices contains a monochromatic copy of G. We show that for every integer d >= 3, almost every d-regular graph satisfies R(G) >= n^(3/2-1/d)/(4log(n)log(log(n))) for every ordering of G. In particular, there are 3-regular graphs on n vertices for which the numbers R(G) are superlinear in n, regardless of the ordering G. This solves a problem of Conlon, Fox, Lee, and Sudakov. On the other hand, we prove that every graph on n vertices with maximum degree 2 admits an ordering G such that R(G) is linear in n. We also show that almost every ordered matching M with n vertices and with interval chromatic number two satisfies R(M) >= cn^2/log(n)^2 for some absolute constant c.
Název v anglickém jazyce
On ordered Ramsey numbers of bounded-degree graphs
Popis výsledku anglicky
An ordered graph is a pair G=(H,<) where H is a graph and < is a total ordering of its vertices. The ordered Ramsey number R(G) is the minimum number N such that every 2-coloring of the edges of the ordered complete graph on N vertices contains a monochromatic copy of G. We show that for every integer d >= 3, almost every d-regular graph satisfies R(G) >= n^(3/2-1/d)/(4log(n)log(log(n))) for every ordering of G. In particular, there are 3-regular graphs on n vertices for which the numbers R(G) are superlinear in n, regardless of the ordering G. This solves a problem of Conlon, Fox, Lee, and Sudakov. On the other hand, we prove that every graph on n vertices with maximum degree 2 admits an ordering G such that R(G) is linear in n. We also show that almost every ordered matching M with n vertices and with interval chromatic number two satisfies R(M) >= cn^2/log(n)^2 for some absolute constant c.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-14179S" target="_blank" >GA14-14179S: Algoritmické, strukturální a složitostní aspekty konfigurací v rovině</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Theory. Series B
ISSN
0095-8956
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
134
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
179-202
Kód UT WoS článku
000452250300008
EID výsledku v databázi Scopus
2-s2.0-85048719370