Cops, a fast robber and defensive domination on interval graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10387176" target="_blank" >RIV/00216208:11320/19:10387176 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=exNqtDCMBw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=exNqtDCMBw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2018.09.031" target="_blank" >10.1016/j.tcs.2018.09.031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cops, a fast robber and defensive domination on interval graphs
Popis výsledku v původním jazyce
The game of Cops and oo-fast Robber is played by two players, one controlling c cops, the other one robber. The players alternate in turns: all the cops move at once to distance at most one each, the robber moves along any cop-free path. Cops win by sharing a vertex with the robber, the robber by avoiding capture indefinitely. The game was proposed with bounded robber speed by Fomin et al. in "Pursuing a fast robber on a graph", generalizing a well-known game of Cops and Robber which has robber speed 1. We answer their open question about the computational complexity of the game on interval graphs with oo-fast robber, showing it to be polynomially decidable. We also generalize the concept of k-defensive domination introduced by Farley and Proskurowski in "Defensive Domination" to A-defensive domination and use it as a main tool in our proof. The generalization allows specifying arbitrary attacks and limiting the number of defenders of each vertex. While this problem is NP-complete even for split graphs, we show that A-defensive domination is decidable in polynomial time on interval graphs.
Název v anglickém jazyce
Cops, a fast robber and defensive domination on interval graphs
Popis výsledku anglicky
The game of Cops and oo-fast Robber is played by two players, one controlling c cops, the other one robber. The players alternate in turns: all the cops move at once to distance at most one each, the robber moves along any cop-free path. Cops win by sharing a vertex with the robber, the robber by avoiding capture indefinitely. The game was proposed with bounded robber speed by Fomin et al. in "Pursuing a fast robber on a graph", generalizing a well-known game of Cops and Robber which has robber speed 1. We answer their open question about the computational complexity of the game on interval graphs with oo-fast robber, showing it to be polynomially decidable. We also generalize the concept of k-defensive domination introduced by Farley and Proskurowski in "Defensive Domination" to A-defensive domination and use it as a main tool in our proof. The generalization allows specifying arbitrary attacks and limiting the number of defenders of each vertex. While this problem is NP-complete even for split graphs, we show that A-defensive domination is decidable in polynomial time on interval graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
794
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
47-58
Kód UT WoS článku
000493216900006
EID výsledku v databázi Scopus
2-s2.0-85054130452