Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fast Detection of Concurrency Errors by State Space Traversal with Randomization and Early Backtracking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10387411" target="_blank" >RIV/00216208:11320/19:10387411 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YtjLTyM86p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=YtjLTyM86p</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10009-018-0484-7" target="_blank" >10.1007/s10009-018-0484-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fast Detection of Concurrency Errors by State Space Traversal with Randomization and Early Backtracking

  • Popis výsledku v původním jazyce

    State space traversal is a very popular approach to detect concurrency errors and test concurrent programs. However, it is not practically feasible for complex programs with many thread interleavings and a large state space. Many techniques explore only a part of the state space in order to find errors quickly --- building upon the observation that errors can often be found in a particular small part of the state space. Great improvements of performance have been achieved also through randomization. In the context of this research direction, we present the DFS-RB algorithm that augments the standard algorithm for depth-first traversal with early backtracking. Specifically, it is possible to backtrack early from a state before all outgoing transitions have been explored. The DFS-RB algorithm is non-deterministic --- it uses random numbers, together with values of several parameters, to determine when and how early backtracking takes place in the search. To evaluate DFS-RB, we performed a large experimental study with our prototype implementation in Java Pathfinder on several Java programs. The results show that DFS-RB achieves better performance in terms of speed and error detection than many state-of-the-art techniques for many benchmarks in our set. Nevertheless, it is difficult to find a single configuration of DFS-RB that works well for many different benchmarks. We designed a ranking algorithm whose purpose is to identify configurations that yield overall consistently good performance with a small variation.

  • Název v anglickém jazyce

    Fast Detection of Concurrency Errors by State Space Traversal with Randomization and Early Backtracking

  • Popis výsledku anglicky

    State space traversal is a very popular approach to detect concurrency errors and test concurrent programs. However, it is not practically feasible for complex programs with many thread interleavings and a large state space. Many techniques explore only a part of the state space in order to find errors quickly --- building upon the observation that errors can often be found in a particular small part of the state space. Great improvements of performance have been achieved also through randomization. In the context of this research direction, we present the DFS-RB algorithm that augments the standard algorithm for depth-first traversal with early backtracking. Specifically, it is possible to backtrack early from a state before all outgoing transitions have been explored. The DFS-RB algorithm is non-deterministic --- it uses random numbers, together with values of several parameters, to determine when and how early backtracking takes place in the search. To evaluate DFS-RB, we performed a large experimental study with our prototype implementation in Java Pathfinder on several Java programs. The results show that DFS-RB achieves better performance in terms of speed and error detection than many state-of-the-art techniques for many benchmarks in our set. Nevertheless, it is difficult to find a single configuration of DFS-RB that works well for many different benchmarks. We designed a ranking algorithm whose purpose is to identify configurations that yield overall consistently good performance with a small variation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-17403S" target="_blank" >GA18-17403S: Automatická inkrementální verifikace a odstraňování chyb pro souběžné systémy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal on Software Tools for Technology Transfer

  • ISSN

    1433-2779

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    36

  • Strana od-do

    365-400

  • Kód UT WoS článku

    000476539900001

  • EID výsledku v databázi Scopus

    2-s2.0-85041223636