Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Algebraic description of the finite Stieltjes moment problem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10393271" target="_blank" >RIV/00216208:11320/19:10393271 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jQtjsnYoiQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=jQtjsnYoiQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.laa.2018.09.026" target="_blank" >10.1016/j.laa.2018.09.026</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Algebraic description of the finite Stieltjes moment problem

  • Popis výsledku v původním jazyce

    The Stieltjes problem of moments seeks for a nondecreasing positive distribution function mu(lambda) on the semi-axis [0, +infinity) so that its moments match a given infinite sequence of positive real numbers m(0), m(l), . . . . In his seminal paper Investigations on continued fractions published in 1894 Stieltjes gave a complete solution including the conditions for the existence and uniqueness in relation to his main goal, the convergence theory of continued fractions. One can also reformulate the Stieltjes problem of moments as looking for a sequence of positive distribution functions mu((1))(lambda), mu((2))(lambda), . . . , where the nth distribution function has n points of increase and, m(0), m(1), . . . , m(2n-1 )represent its (first) 2n moments, i.e., as the sequence of the finite Stieltjes moment problems. This view can be linked to iterative solution of (large) linear algebraic systems. Providing that m(0), m(1), . . . , are moments of some linear, self-adjoint and coercive operator A on a Hilbert space with respect to a given vector f , the finite Stieltjes moment problems determine the iterations of the conjugate gradient method applied for solving Au = f, and vice versa. Here the existence and uniqueness is guaranteed by the properties of the operator A (reformulation for finite sequences, matrices and finite vectors is obvious). This fundamental link raises a question on how the solution of the finite Stieltjes moment problem can be described purely algebraically. This has motivated the presented exposition built upon ideas published previously by several authors. Since the description uses matrices of moments, it is not intended for numerical computations. (C) 2018 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    Algebraic description of the finite Stieltjes moment problem

  • Popis výsledku anglicky

    The Stieltjes problem of moments seeks for a nondecreasing positive distribution function mu(lambda) on the semi-axis [0, +infinity) so that its moments match a given infinite sequence of positive real numbers m(0), m(l), . . . . In his seminal paper Investigations on continued fractions published in 1894 Stieltjes gave a complete solution including the conditions for the existence and uniqueness in relation to his main goal, the convergence theory of continued fractions. One can also reformulate the Stieltjes problem of moments as looking for a sequence of positive distribution functions mu((1))(lambda), mu((2))(lambda), . . . , where the nth distribution function has n points of increase and, m(0), m(1), . . . , m(2n-1 )represent its (first) 2n moments, i.e., as the sequence of the finite Stieltjes moment problems. This view can be linked to iterative solution of (large) linear algebraic systems. Providing that m(0), m(1), . . . , are moments of some linear, self-adjoint and coercive operator A on a Hilbert space with respect to a given vector f , the finite Stieltjes moment problems determine the iterations of the conjugate gradient method applied for solving Au = f, and vice versa. Here the existence and uniqueness is guaranteed by the properties of the operator A (reformulation for finite sequences, matrices and finite vectors is obvious). This fundamental link raises a question on how the solution of the finite Stieltjes moment problem can be described purely algebraically. This has motivated the presented exposition built upon ideas published previously by several authors. Since the description uses matrices of moments, it is not intended for numerical computations. (C) 2018 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Linear Algebra and Its Applications

  • ISSN

    0024-3795

  • e-ISSN

  • Svazek periodika

    561

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    207-227

  • Kód UT WoS článku

    000450385500012

  • EID výsledku v databázi Scopus

    2-s2.0-85054323631