Graph Pattern Index for Neo4j Graph Databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10395844" target="_blank" >RIV/00216208:11320/19:10395844 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-26636-3_4" target="_blank" >http://dx.doi.org/10.1007/978-3-030-26636-3_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-26636-3_4" target="_blank" >10.1007/978-3-030-26636-3_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Pattern Index for Neo4j Graph Databases
Popis výsledku v původním jazyce
Nowadays graphs have become very popular in domains like social media analytics, healthcare, natural sciences, BI, networking, etc. Graph databases (GDB) allow simple and rapid retrieval of complex graph structures that are difficult to model in traditional information systems based on a relational DBMS. GDB are designed to exploit relationships in data, which means they can uncover patterns difficult to detect using traditional methods. We introduce a new method for indexing graph patterns within a GDB modelled as a labelled property graph. The index is based on so called graph pattern trees of variations and stored in the same database where the database graph. The method is implemented for Neo4j GDB engine and analysed on three graph datasets. It enables to create, use and update indexes that are used to speed-up the process of matching graph patterns. The paper provides details of the implementation, experiments, and a comparison between queries with and without using indexes.
Název v anglickém jazyce
Graph Pattern Index for Neo4j Graph Databases
Popis výsledku anglicky
Nowadays graphs have become very popular in domains like social media analytics, healthcare, natural sciences, BI, networking, etc. Graph databases (GDB) allow simple and rapid retrieval of complex graph structures that are difficult to model in traditional information systems based on a relational DBMS. GDB are designed to exploit relationships in data, which means they can uncover patterns difficult to detect using traditional methods. We introduce a new method for indexing graph patterns within a GDB modelled as a labelled property graph. The index is based on so called graph pattern trees of variations and stored in the same database where the database graph. The method is implemented for Neo4j GDB engine and analysed on three graph datasets. It enables to create, use and update indexes that are used to speed-up the process of matching graph patterns. The paper provides details of the implementation, experiments, and a comparison between queries with and without using indexes.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Data Management Technologies and Applications. DATA 2018.
ISBN
978-3-030-26635-6
Počet stran výsledku
22
Strana od-do
69-90
Počet stran knihy
210
Název nakladatele
Springer
Místo vydání
Neuveden
Kód UT WoS kapitoly
—