Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the optimal solution set in interval linear programming

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10397331" target="_blank" >RIV/00216208:11320/19:10397331 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZcPJKUZfKM" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZcPJKUZfKM</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10589-018-0029-8" target="_blank" >10.1007/s10589-018-0029-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the optimal solution set in interval linear programming

  • Popis výsledku v původním jazyce

    Determining the set of all optimal solutions of a linear program with interval data is one of the most challenging problems discussed in interval optimization. In this paper, we study the topological and geometric properties of the optimal set and examine sufficient conditions for its closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co-NP-hard for inequality-constrained problems with free variables. Furthermore, we prove that computing the exact interval hull of the optimal set is NP-hard for linear programs with an interval right-hand-side vector. We then propose a new decomposition method for approximating the optimal solution set based on complementary slackness and show that the method provides the exact description of the optimal set for problems with afixed coefficient matrix. Finally, we conduct computational experiments to compare our method with the existing orthant decomposition method.

  • Název v anglickém jazyce

    On the optimal solution set in interval linear programming

  • Popis výsledku anglicky

    Determining the set of all optimal solutions of a linear program with interval data is one of the most challenging problems discussed in interval optimization. In this paper, we study the topological and geometric properties of the optimal set and examine sufficient conditions for its closedness, boundedness, connectedness and convexity. We also prove that testing boundedness is co-NP-hard for inequality-constrained problems with free variables. Furthermore, we prove that computing the exact interval hull of the optimal set is NP-hard for linear programs with an interval right-hand-side vector. We then propose a new decomposition method for approximating the optimal solution set based on complementary slackness and show that the method provides the exact description of the optimal set for problems with afixed coefficient matrix. Finally, we conduct computational experiments to compare our method with the existing orthant decomposition method.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-04735S" target="_blank" >GA18-04735S: Nové přístupy pro relaxační a aproximační techniky v deterministické globální optimalizaci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computational Optimization and Applications

  • ISSN

    0926-6003

  • e-ISSN

  • Svazek periodika

    72

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    269-292

  • Kód UT WoS článku

    000456934700009

  • EID výsledku v databázi Scopus

    2-s2.0-85052533854