Explainable Similarity of Datasets using Knowledge Graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10398464" target="_blank" >RIV/00216208:11320/19:10398464 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-32047-8_10" target="_blank" >https://doi.org/10.1007/978-3-030-32047-8_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-32047-8_10" target="_blank" >10.1007/978-3-030-32047-8_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explainable Similarity of Datasets using Knowledge Graph
Popis výsledku v původním jazyce
There is a large quantity of datasets available as Open Data on the Web. However, it is challenging for users to find datasets relevant to their needs, even though the datasets are registered in catalogs such as the European Data Portal. This is because the available metadata such as keywords or textual description is not descriptive enough. At the same time, datasets exist in various types of contexts not expressed in the metadata. These may include information about the dataset publisher, the legislation related to dataset publication, language and cultural specifics, etc. In this paper we introduce a similarity model for matching datasets. The model assumes an ontology/knowledge graph, such as Wikidata.org, that serves as a graph-based context to which individual datasets are mapped based on their metadata. A similarity of the datasets is then computed as an aggregation over paths among nodes in the graph. The proposed similarity aims at addressing the problem of explainability of similarity, i.e., providing the user a structured explanation of the match which, in a broader sense, is nowadays a hot topic in the field of artificial intelligence.
Název v anglickém jazyce
Explainable Similarity of Datasets using Knowledge Graph
Popis výsledku anglicky
There is a large quantity of datasets available as Open Data on the Web. However, it is challenging for users to find datasets relevant to their needs, even though the datasets are registered in catalogs such as the European Data Portal. This is because the available metadata such as keywords or textual description is not descriptive enough. At the same time, datasets exist in various types of contexts not expressed in the metadata. These may include information about the dataset publisher, the legislation related to dataset publication, language and cultural specifics, etc. In this paper we introduce a similarity model for matching datasets. The model assumes an ontology/knowledge graph, such as Wikidata.org, that serves as a graph-based context to which individual datasets are mapped based on their metadata. A similarity of the datasets is then computed as an aggregation over paths among nodes in the graph. The proposed similarity aims at addressing the problem of explainability of similarity, i.e., providing the user a structured explanation of the match which, in a broader sense, is nowadays a hot topic in the field of artificial intelligence.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01641S" target="_blank" >GA19-01641S: Kontextové podobnostní vyhledávání v otevřených datech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-030-32046-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
8
Strana od-do
103-110
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Newark NJ, USA
Datum konání akce
2. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—