Visualizer of Dataset Similarity Using Knowledge Graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420919" target="_blank" >RIV/00216208:11320/20:10420919 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-60936-8_29" target="_blank" >https://doi.org/10.1007/978-3-030-60936-8_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60936-8_29" target="_blank" >10.1007/978-3-030-60936-8_29</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visualizer of Dataset Similarity Using Knowledge Graph
Popis výsledku v původním jazyce
Many institutions choose to make their datasets available as Open Data. Open Data datasets are described by publisher-provided metadata and are registered in catalogs such as the European Data Portal. In spite of that, findability still remain a major issue. One of the main reasons is that metadata is captured in different contexts and with different background knowledge, so that keyword-based search provided by the catalogs is insufficient. A solution is to use an enriched querying that employs a dataset similarity model built on a shared context represented by a knowledge graph. However, the "black-box" dataset similarity may not fit well the user needs. If an explainable similarity model is used, then the issue can be tackled by providing users with a visualisation of the dataset similarity. This paper introduces a web-based tool for dataset similarity visualisation called ODIN (Open Dataset INspector). ODIN visualises knowledge graph-based dataset similarity, offering thus an explanation to the user. To understand the similarity, users can discover additional datasets that match their needs or reformulate the query to better reflect the knowledge graph. Last but not least, the user can analyze and/or design the similarity model itself.
Název v anglickém jazyce
Visualizer of Dataset Similarity Using Knowledge Graph
Popis výsledku anglicky
Many institutions choose to make their datasets available as Open Data. Open Data datasets are described by publisher-provided metadata and are registered in catalogs such as the European Data Portal. In spite of that, findability still remain a major issue. One of the main reasons is that metadata is captured in different contexts and with different background knowledge, so that keyword-based search provided by the catalogs is insufficient. A solution is to use an enriched querying that employs a dataset similarity model built on a shared context represented by a knowledge graph. However, the "black-box" dataset similarity may not fit well the user needs. If an explainable similarity model is used, then the issue can be tackled by providing users with a visualisation of the dataset similarity. This paper introduces a web-based tool for dataset similarity visualisation called ODIN (Open Dataset INspector). ODIN visualises knowledge graph-based dataset similarity, offering thus an explanation to the user. To understand the similarity, users can discover additional datasets that match their needs or reformulate the query to better reflect the knowledge graph. Last but not least, the user can analyze and/or design the similarity model itself.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01641S" target="_blank" >GA19-01641S: Kontextové podobnostní vyhledávání v otevřených datech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Similarity Search and Applications. SISAP 2020.
ISBN
978-3-030-60936-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
371-378
Název nakladatele
Springer
Místo vydání
Cham, Germany
Místo konání akce
Copenhagen, Denmark
Datum konání akce
30. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—