FV-DG method for the pedestrian flow problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399594" target="_blank" >RIV/00216208:11320/19:10399594 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/19:43894564 RIV/68407700:21340/19:00333845
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MQzYkMfMrS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MQzYkMfMrS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compfluid.2019.03.006" target="_blank" >10.1016/j.compfluid.2019.03.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FV-DG method for the pedestrian flow problem
Popis výsledku v původním jazyce
We consider the Pedestrian Flow Equations (PFEs) to model evacuation scenarios as a coupled system formed by a functional minimization problem for the desired direction of movement and a first order hyperbolic system with source term. The operator splitting is proposed for the numerical solution of the coupled system. The functional minimization is based on the modified Dijkstra's algorithm for the fastest path in a graph. The hyperbolic system is discretized by the combination of the Finite Volume Method (FVM) for the space discretization and the Discontinuous Galerkin Method (DGM) for the implicit time discretization. The original numerical flux of the Vijayasundaram type is used in the FVM. The standard approach for the desired direction of motion of pedestrians based on the solution of the Eikonal Equation is replaced by the functional minimization, which, together with the implicit time discontinuous Galerkin method, is the novelty of this paper. The relation between the proposed functional minimization and the Eikonal Equation is mentioned. The numerical examples of the solution of the PFEs are presented. (C) 2019 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
FV-DG method for the pedestrian flow problem
Popis výsledku anglicky
We consider the Pedestrian Flow Equations (PFEs) to model evacuation scenarios as a coupled system formed by a functional minimization problem for the desired direction of movement and a first order hyperbolic system with source term. The operator splitting is proposed for the numerical solution of the coupled system. The functional minimization is based on the modified Dijkstra's algorithm for the fastest path in a graph. The hyperbolic system is discretized by the combination of the Finite Volume Method (FVM) for the space discretization and the Discontinuous Galerkin Method (DGM) for the implicit time discretization. The original numerical flux of the Vijayasundaram type is used in the FVM. The standard approach for the desired direction of motion of pedestrians based on the solution of the Eikonal Equation is replaced by the functional minimization, which, together with the implicit time discontinuous Galerkin method, is the novelty of this paper. The relation between the proposed functional minimization and the Eikonal Equation is mentioned. The numerical examples of the solution of the PFEs are presented. (C) 2019 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01747S" target="_blank" >GA17-01747S: Teorie a numerická analýza sdružených problémů dynamiky tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Fluids
ISSN
0045-7930
e-ISSN
—
Svazek periodika
183
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000466823500001
EID výsledku v databázi Scopus
2-s2.0-85062868745