Data depth for measurable noisy random functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399730" target="_blank" >RIV/00216208:11320/19:10399730 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BNNqCSHoMf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BNNqCSHoMf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2018.11.003" target="_blank" >10.1016/j.jmva.2018.11.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data depth for measurable noisy random functions
Popis výsledku v původním jazyce
In the literature on data depth applicable to random functions, it is usually assumed that the trajectories of all the random curves are continuous, known at each point of the domain, and observed exactly. These assumptions turn out to be unrealistic in practice, as the functions are often observed only on a finite grid of time points, and in the presence of measurement errors. In this work, we provide the necessary theoretical background enabling the extension of the statistical methodology based on data depth to measurable (not necessarily continuous) random functions observed within the latter framework. It is shown that even if the random functions are discontinuous, observed discretely, and contaminated with additive noise, many common depth functionals maintain the fine consistency properties valid in the ideal case of completely observed noiseless functions. For the integrated depth for functions, we provide uniform rates of convergence over the space of integrable functions. (C) 2018 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Data depth for measurable noisy random functions
Popis výsledku anglicky
In the literature on data depth applicable to random functions, it is usually assumed that the trajectories of all the random curves are continuous, known at each point of the domain, and observed exactly. These assumptions turn out to be unrealistic in practice, as the functions are often observed only on a finite grid of time points, and in the presence of measurement errors. In this work, we provide the necessary theoretical background enabling the extension of the statistical methodology based on data depth to measurable (not necessarily continuous) random functions observed within the latter framework. It is shown that even if the random functions are discontinuous, observed discretely, and contaminated with additive noise, many common depth functionals maintain the fine consistency properties valid in the ideal case of completely observed noiseless functions. For the integrated depth for functions, we provide uniform rates of convergence over the space of integrable functions. (C) 2018 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-00522Y" target="_blank" >GJ18-00522Y: Pokročilé Ekonometrické Modely pro Oceňování Opcí – AdEMOP</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Svazek periodika
170
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
95-114
Kód UT WoS článku
000457205300008
EID výsledku v databázi Scopus
2-s2.0-85057727651