Well posedness of nonlinear parabolic systems beyond duality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401796" target="_blank" >RIV/00216208:11320/19:10401796 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8kdkHGuV0L" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8kdkHGuV0L</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.anihpc.2019.01.004" target="_blank" >10.1016/j.anihpc.2019.01.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Well posedness of nonlinear parabolic systems beyond duality
Popis výsledku v původním jazyce
We develop a methodology for proving well-posedness in optimal regularity spaces for a wide class of nonlinear parabolic initial-boundary value systems, where the standard monotone operator theory fails. A motivational example of a problem accessible to our technique is the following system partial derivative(t)u - div (nu(vertical bar del u vertical bar) = -div f with a given strictly positive bounded function v, such that lim(k ->infinity)nu(k) = v(infinity) and f is an element of L-q with q is an element of (1, infinity). The existence, uniqueness and regularity results for q >= 2 are by now standard. However, even if a priori estimates are available, the existence in case q is an element of (1, 2) was essentially missing. We overcome the related crucial difficulty, namely the lack of a standard duality pairing, by resorting to proper weighted spaces and consequently provide existence, uniqueness and optimal regularity in the entire range q is an element of (1, infinity). Furthermore, our paper includes several new results that may be of independent interest and serve as the starting point for further analysis of more complicated problems. They include a parabolic Lipschitz approximation method in weighted spaces with fine control of the time derivative and a theory for linear parabolic systems with right hand sides belonging to Muckenhoupt weighted L-q spaces. (C) 2019 Elsevier Masson SAS. All rights reserved.
Název v anglickém jazyce
Well posedness of nonlinear parabolic systems beyond duality
Popis výsledku anglicky
We develop a methodology for proving well-posedness in optimal regularity spaces for a wide class of nonlinear parabolic initial-boundary value systems, where the standard monotone operator theory fails. A motivational example of a problem accessible to our technique is the following system partial derivative(t)u - div (nu(vertical bar del u vertical bar) = -div f with a given strictly positive bounded function v, such that lim(k ->infinity)nu(k) = v(infinity) and f is an element of L-q with q is an element of (1, infinity). The existence, uniqueness and regularity results for q >= 2 are by now standard. However, even if a priori estimates are available, the existence in case q is an element of (1, 2) was essentially missing. We overcome the related crucial difficulty, namely the lack of a standard duality pairing, by resorting to proper weighted spaces and consequently provide existence, uniqueness and optimal regularity in the entire range q is an element of (1, infinity). Furthermore, our paper includes several new results that may be of independent interest and serve as the starting point for further analysis of more complicated problems. They include a parabolic Lipschitz approximation method in weighted spaces with fine control of the time derivative and a theory for linear parabolic systems with right hand sides belonging to Muckenhoupt weighted L-q spaces. (C) 2019 Elsevier Masson SAS. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-12719S" target="_blank" >GA18-12719S: Thermodynamická a matematická analýza proudění strukturovaných tekutin</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire
ISSN
0294-1449
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
34
Strana od-do
1467-1500
Kód UT WoS článku
000482247300010
EID výsledku v databázi Scopus
2-s2.0-85062679610