Dynamic Scoring: Probabilistic Model Selection Based on Utility Maximization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10401994" target="_blank" >RIV/00216208:11320/19:10401994 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/64941663:_____/19:N0000001
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQcMdw~tdF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qQcMdw~tdF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e21010036" target="_blank" >10.3390/e21010036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Scoring: Probabilistic Model Selection Based on Utility Maximization
Popis výsledku v původním jazyce
We propose a novel approach of model selection for probability estimates that may be applied in time evolving setting. Specifically, we show that any discrepancy between different probability estimates opens a possibility to compare them by trading on a hypothetical betting market that trades probabilities. We describe the mechanism of such a market, where agents maximize some utility function which determines the optimal trading volume for given odds. This procedure produces supply and demand functions, that determine the size of the bet as a function of a trading probability. These functions are closed form for the choice of logarithmic and exponential utility functions. Having two probability estimates and the corresponding supply and demand functions, the trade matching these estimates happens at the intersection of the supply and demand functions. We show that an agent using correct probabilities will realize a profit in expectation when trading against any other set of probabilities. The expected profit realized by the correct view of the market probabilities can be used as a measure of information in terms of statistical divergence.
Název v anglickém jazyce
Dynamic Scoring: Probabilistic Model Selection Based on Utility Maximization
Popis výsledku anglicky
We propose a novel approach of model selection for probability estimates that may be applied in time evolving setting. Specifically, we show that any discrepancy between different probability estimates opens a possibility to compare them by trading on a hypothetical betting market that trades probabilities. We describe the mechanism of such a market, where agents maximize some utility function which determines the optimal trading volume for given odds. This procedure produces supply and demand functions, that determine the size of the bet as a function of a trading probability. These functions are closed form for the choice of logarithmic and exponential utility functions. Having two probability estimates and the corresponding supply and demand functions, the trade matching these estimates happens at the intersection of the supply and demand functions. We show that an agent using correct probabilities will realize a profit in expectation when trading against any other set of probabilities. The expected profit realized by the correct view of the market probabilities can be used as a measure of information in terms of statistical divergence.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-21216S" target="_blank" >GA16-21216S: Management portfolia s několika referenčními aktivy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
36
Kód UT WoS článku
000459740300036
EID výsledku v databázi Scopus
2-s2.0-85060391361