Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combinatorial n-fold integer programming and applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403784" target="_blank" >RIV/00216208:11320/19:10403784 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/20:00343438

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OLaDV9455S" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OLaDV9455S</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10107-019-01402-2" target="_blank" >10.1007/s10107-019-01402-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combinatorial n-fold integer programming and applications

  • Popis výsledku v původním jazyce

    Many fundamental ????????-hard problems can be formulated as integer linear programs (ILPs). A famous algorithm by Lenstra solves ILPs in time that is exponential only in the dimension of the program, and polynomial in the size of the ILP. That algorithm became a ubiquitous tool in the design of fixed-parameter algorithms for ????????-hard problems, where one wishes to isolate the hardness of a problem by some parameter. However, in many cases using Lenstra&apos;s algorithm has two drawbacks: First, the run time of the resulting algorithms is often double-exponential in the parameter, and second, an ILP formulation in small dimension cannot easily express problems involving many different costs. Inspired by the work of Hemmecke et al. (Math Program 137(1-2, Ser. A):325-341, 2013), we develop a single-exponential algorithm for so-called combinatorialn-fold integer programs, which are remarkably similar to prior ILP formulations for various problems, but unlike them, also allow variable dimension. We then apply our algorithm to many relevant problems problems like Closest String, Swap Bribery, Weighted Set Multicover, and several others, and obtain exponential speedups in the dependence on the respective parameters, the input size, or both. Unlike Lenstra&apos;s algorithm, which is essentially a bounded search tree algorithm, our result uses the technique of augmenting steps. At its heart is a deep result stating that in combinatorial n-fold IPs, existence of an augmenting step implies existence of a &quot;local&quot; augmenting step, which can be found using dynamic programming. Our results provide an important insight into many problems by showing that they exhibit this phenomenon, and highlights the importance of augmentation techniques.

  • Název v anglickém jazyce

    Combinatorial n-fold integer programming and applications

  • Popis výsledku anglicky

    Many fundamental ????????-hard problems can be formulated as integer linear programs (ILPs). A famous algorithm by Lenstra solves ILPs in time that is exponential only in the dimension of the program, and polynomial in the size of the ILP. That algorithm became a ubiquitous tool in the design of fixed-parameter algorithms for ????????-hard problems, where one wishes to isolate the hardness of a problem by some parameter. However, in many cases using Lenstra&apos;s algorithm has two drawbacks: First, the run time of the resulting algorithms is often double-exponential in the parameter, and second, an ILP formulation in small dimension cannot easily express problems involving many different costs. Inspired by the work of Hemmecke et al. (Math Program 137(1-2, Ser. A):325-341, 2013), we develop a single-exponential algorithm for so-called combinatorialn-fold integer programs, which are remarkably similar to prior ILP formulations for various problems, but unlike them, also allow variable dimension. We then apply our algorithm to many relevant problems problems like Closest String, Swap Bribery, Weighted Set Multicover, and several others, and obtain exponential speedups in the dependence on the respective parameters, the input size, or both. Unlike Lenstra&apos;s algorithm, which is essentially a bounded search tree algorithm, our result uses the technique of augmenting steps. At its heart is a deep result stating that in combinatorial n-fold IPs, existence of an augmenting step implies existence of a &quot;local&quot; augmenting step, which can be found using dynamic programming. Our results provide an important insight into many problems by showing that they exhibit this phenomenon, and highlights the importance of augmentation techniques.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Programming, Series A

  • ISSN

    0025-5610

  • e-ISSN

  • Svazek periodika

    2020

  • Číslo periodika v rámci svazku

    184

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    34

  • Strana od-do

    1-34

  • Kód UT WoS článku

    000574702000002

  • EID výsledku v databázi Scopus

    2-s2.0-85075419122