Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Long-term stability of Enceladus' uneven ice shell

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403988" target="_blank" >RIV/00216208:11320/19:10403988 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z.L6XwmF0T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z.L6XwmF0T</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.icarus.2018.10.003" target="_blank" >10.1016/j.icarus.2018.10.003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Long-term stability of Enceladus' uneven ice shell

  • Popis výsledku v původním jazyce

    We present a new model of Enceladus&apos; internal structure based on the recent shape model by Tajeddine et al. (2017) and the gravity model by Iess et al. (2014). Assuming that the rocky core is homogeneous and in hydrostatic equilibrium, we derive a set of structural models that accurately reproduce the main characteristics of Enceladus&apos; gravity field. In order to restrict the range of acceptable models we analyze the degree of compensation (ratio of the bottom to the surface load) at spherical harmonic degrees well constrained by the gravity data. In agreement with previous studies, we find that Enceladus&apos; ice shell is close to equilibrium, with the degree of compensation approaching one for models with a hydrostatic core having a radius between 190 km and 195 km. By computing the flow of ice driven by variations in hydrostatic pressure on the ice water/interface, we demonstrate that the ice shell is in steady state, as suggested by the gravity and shape data, only if the viscosity of ice at the melting temperature is equal to or higher than 3 x 10(14) Pa s, corresponding to diffusion creep with a grain size of 1 mm or larger. The topographic anomalies are maintained by phase changes at the ice/water interface with a melting/freezing rate of a few mm/yr or smaller. This process is controlled by the heat flux at the top of the ocean, characterized by a strong degree-2 zonal component with amplitudes exceeding 60 rnW/m(2) in both south and north polar regions.

  • Název v anglickém jazyce

    Long-term stability of Enceladus' uneven ice shell

  • Popis výsledku anglicky

    We present a new model of Enceladus&apos; internal structure based on the recent shape model by Tajeddine et al. (2017) and the gravity model by Iess et al. (2014). Assuming that the rocky core is homogeneous and in hydrostatic equilibrium, we derive a set of structural models that accurately reproduce the main characteristics of Enceladus&apos; gravity field. In order to restrict the range of acceptable models we analyze the degree of compensation (ratio of the bottom to the surface load) at spherical harmonic degrees well constrained by the gravity data. In agreement with previous studies, we find that Enceladus&apos; ice shell is close to equilibrium, with the degree of compensation approaching one for models with a hydrostatic core having a radius between 190 km and 195 km. By computing the flow of ice driven by variations in hydrostatic pressure on the ice water/interface, we demonstrate that the ice shell is in steady state, as suggested by the gravity and shape data, only if the viscosity of ice at the melting temperature is equal to or higher than 3 x 10(14) Pa s, corresponding to diffusion creep with a grain size of 1 mm or larger. The topographic anomalies are maintained by phase changes at the ice/water interface with a melting/freezing rate of a few mm/yr or smaller. This process is controlled by the heat flux at the top of the ocean, characterized by a strong degree-2 zonal component with amplitudes exceeding 60 rnW/m(2) in both south and north polar regions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Icarus

  • ISSN

    0019-1035

  • e-ISSN

  • Svazek periodika

    319

  • Číslo periodika v rámci svazku

    2019

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    476-484

  • Kód UT WoS článku

    000455422800032

  • EID výsledku v databázi Scopus

    2-s2.0-85054729585