Long-term stability of Enceladus' uneven ice shell
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10403988" target="_blank" >RIV/00216208:11320/19:10403988 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z.L6XwmF0T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z.L6XwmF0T</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.icarus.2018.10.003" target="_blank" >10.1016/j.icarus.2018.10.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Long-term stability of Enceladus' uneven ice shell
Popis výsledku v původním jazyce
We present a new model of Enceladus' internal structure based on the recent shape model by Tajeddine et al. (2017) and the gravity model by Iess et al. (2014). Assuming that the rocky core is homogeneous and in hydrostatic equilibrium, we derive a set of structural models that accurately reproduce the main characteristics of Enceladus' gravity field. In order to restrict the range of acceptable models we analyze the degree of compensation (ratio of the bottom to the surface load) at spherical harmonic degrees well constrained by the gravity data. In agreement with previous studies, we find that Enceladus' ice shell is close to equilibrium, with the degree of compensation approaching one for models with a hydrostatic core having a radius between 190 km and 195 km. By computing the flow of ice driven by variations in hydrostatic pressure on the ice water/interface, we demonstrate that the ice shell is in steady state, as suggested by the gravity and shape data, only if the viscosity of ice at the melting temperature is equal to or higher than 3 x 10(14) Pa s, corresponding to diffusion creep with a grain size of 1 mm or larger. The topographic anomalies are maintained by phase changes at the ice/water interface with a melting/freezing rate of a few mm/yr or smaller. This process is controlled by the heat flux at the top of the ocean, characterized by a strong degree-2 zonal component with amplitudes exceeding 60 rnW/m(2) in both south and north polar regions.
Název v anglickém jazyce
Long-term stability of Enceladus' uneven ice shell
Popis výsledku anglicky
We present a new model of Enceladus' internal structure based on the recent shape model by Tajeddine et al. (2017) and the gravity model by Iess et al. (2014). Assuming that the rocky core is homogeneous and in hydrostatic equilibrium, we derive a set of structural models that accurately reproduce the main characteristics of Enceladus' gravity field. In order to restrict the range of acceptable models we analyze the degree of compensation (ratio of the bottom to the surface load) at spherical harmonic degrees well constrained by the gravity data. In agreement with previous studies, we find that Enceladus' ice shell is close to equilibrium, with the degree of compensation approaching one for models with a hydrostatic core having a radius between 190 km and 195 km. By computing the flow of ice driven by variations in hydrostatic pressure on the ice water/interface, we demonstrate that the ice shell is in steady state, as suggested by the gravity and shape data, only if the viscosity of ice at the melting temperature is equal to or higher than 3 x 10(14) Pa s, corresponding to diffusion creep with a grain size of 1 mm or larger. The topographic anomalies are maintained by phase changes at the ice/water interface with a melting/freezing rate of a few mm/yr or smaller. This process is controlled by the heat flux at the top of the ocean, characterized by a strong degree-2 zonal component with amplitudes exceeding 60 rnW/m(2) in both south and north polar regions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Icarus
ISSN
0019-1035
e-ISSN
—
Svazek periodika
319
Číslo periodika v rámci svazku
2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
476-484
Kód UT WoS článku
000455422800032
EID výsledku v databázi Scopus
2-s2.0-85054729585