Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Flexibility of planar graphs without 4-cycles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404208" target="_blank" >RIV/00216208:11320/19:10404208 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8NWnbInaOL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8NWnbInaOL</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flexibility of planar graphs without 4-cycles

  • Popis výsledku v původním jazyce

    Proper graph coloring assigns different colors to adjacent vertices ofthe graph. Usually, the number of colors is fixed or as small as possible. Considerapplications (e.g. variants of scheduling) where colors represent limited resourcesand graph represents conflicts, i.e., two adjacent vertices cannot obtain the sameresource. In such applications, it is common that some vertices have preferredresource(s). However, unfortunately, it is not usually possible to satisfy all suchpreferences. The notion called flexibility was recently defined in [Dvořák, Norin,Postle: List coloring with requests, Journal of Graph Theory 2019]. There insteadof satisfying all the preferences the aim is to satisfy at least a constant fraction ofthe request. Recently, the structural properties of planar graphs in terms of flexibility wereinvestigated. We continue this line of research. Let G be a planar graph with a listassignment L. Suppose a preferred color is given for some of the vertices. We provethat if G is a planar graph without 4-cycles and all lists have size at least five, thenthere exists an L-coloring respecting at least a constant fraction of the preferences.

  • Název v anglickém jazyce

    Flexibility of planar graphs without 4-cycles

  • Popis výsledku anglicky

    Proper graph coloring assigns different colors to adjacent vertices ofthe graph. Usually, the number of colors is fixed or as small as possible. Considerapplications (e.g. variants of scheduling) where colors represent limited resourcesand graph represents conflicts, i.e., two adjacent vertices cannot obtain the sameresource. In such applications, it is common that some vertices have preferredresource(s). However, unfortunately, it is not usually possible to satisfy all suchpreferences. The notion called flexibility was recently defined in [Dvořák, Norin,Postle: List coloring with requests, Journal of Graph Theory 2019]. There insteadof satisfying all the preferences the aim is to satisfy at least a constant fraction ofthe request. Recently, the structural properties of planar graphs in terms of flexibility wereinvestigated. We continue this line of research. Let G be a planar graph with a listassignment L. Suppose a preferred color is given for some of the vertices. We provethat if G is a planar graph without 4-cycles and all lists have size at least five, thenthere exists an L-coloring respecting at least a constant fraction of the preferences.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Mathematica Universitatis Comenianae

  • ISSN

    0862-9544

  • e-ISSN

  • Svazek periodika

    88

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    6

  • Strana od-do

    935-940

  • Kód UT WoS článku

    000484349000090

  • EID výsledku v databázi Scopus

    2-s2.0-85074030496