Flexibility of planar graphs without 4-cycles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10404208" target="_blank" >RIV/00216208:11320/19:10404208 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8NWnbInaOL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=8NWnbInaOL</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flexibility of planar graphs without 4-cycles
Popis výsledku v původním jazyce
Proper graph coloring assigns different colors to adjacent vertices ofthe graph. Usually, the number of colors is fixed or as small as possible. Considerapplications (e.g. variants of scheduling) where colors represent limited resourcesand graph represents conflicts, i.e., two adjacent vertices cannot obtain the sameresource. In such applications, it is common that some vertices have preferredresource(s). However, unfortunately, it is not usually possible to satisfy all suchpreferences. The notion called flexibility was recently defined in [Dvořák, Norin,Postle: List coloring with requests, Journal of Graph Theory 2019]. There insteadof satisfying all the preferences the aim is to satisfy at least a constant fraction ofthe request. Recently, the structural properties of planar graphs in terms of flexibility wereinvestigated. We continue this line of research. Let G be a planar graph with a listassignment L. Suppose a preferred color is given for some of the vertices. We provethat if G is a planar graph without 4-cycles and all lists have size at least five, thenthere exists an L-coloring respecting at least a constant fraction of the preferences.
Název v anglickém jazyce
Flexibility of planar graphs without 4-cycles
Popis výsledku anglicky
Proper graph coloring assigns different colors to adjacent vertices ofthe graph. Usually, the number of colors is fixed or as small as possible. Considerapplications (e.g. variants of scheduling) where colors represent limited resourcesand graph represents conflicts, i.e., two adjacent vertices cannot obtain the sameresource. In such applications, it is common that some vertices have preferredresource(s). However, unfortunately, it is not usually possible to satisfy all suchpreferences. The notion called flexibility was recently defined in [Dvořák, Norin,Postle: List coloring with requests, Journal of Graph Theory 2019]. There insteadof satisfying all the preferences the aim is to satisfy at least a constant fraction ofthe request. Recently, the structural properties of planar graphs in terms of flexibility wereinvestigated. We continue this line of research. Let G be a planar graph with a listassignment L. Suppose a preferred color is given for some of the vertices. We provethat if G is a planar graph without 4-cycles and all lists have size at least five, thenthere exists an L-coloring respecting at least a constant fraction of the preferences.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Mathematica Universitatis Comenianae
ISSN
0862-9544
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
6
Strana od-do
935-940
Kód UT WoS článku
000484349000090
EID výsledku v databázi Scopus
2-s2.0-85074030496