Flexibility of planar graphs-Sharpening the tools to get lists of size four
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455170" target="_blank" >RIV/00216208:11320/22:10455170 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gC5wMmFvJZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gC5wMmFvJZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2021.09.021" target="_blank" >10.1016/j.dam.2021.09.021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flexibility of planar graphs-Sharpening the tools to get lists of size four
Popis výsledku v původním jazyce
A graph where each vertex v has a list L(v) of available colors is L-colorable if there is a proper coloring such that the color of v is in L(v) for each v. A graph is k-choosable if every assignment L of at least k colors to each vertex guarantees an L-coloring. Given a list assignment L, an L-request for a vertex v is a color c is an element of L(v). In this paper, we look at a variant of the widely studied class of precoloring extension problems from Dvorak, Norin, and Postle (J. Graph Theory, 2019), wherein one must satisfy "enough'', as opposed to all, of the requested set of precolors. A graph G is epsilon-flexible for list size k if for any k-list assignment L, and any set S of L-requests, there is an L-coloring of G satisfying epsilon-fraction of the requests in S. It is conjectured that planar graphs are epsilon-flexible for list size 5, yet it is proved only for list size 6 and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masarik and show that planar graphs without K-4(-) are epsilon-flexible for list size 5. We also prove that planar graphs without 4-cycles and 3-cycle distance at least 2 are epsilon-flexible for list size 4. Finally, we introduce a new (slightly weaker) form of epsilon-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are epsilon-flexible for list size 5. (C) 2021 The Author(s). Published by Elsevier B.V.
Název v anglickém jazyce
Flexibility of planar graphs-Sharpening the tools to get lists of size four
Popis výsledku anglicky
A graph where each vertex v has a list L(v) of available colors is L-colorable if there is a proper coloring such that the color of v is in L(v) for each v. A graph is k-choosable if every assignment L of at least k colors to each vertex guarantees an L-coloring. Given a list assignment L, an L-request for a vertex v is a color c is an element of L(v). In this paper, we look at a variant of the widely studied class of precoloring extension problems from Dvorak, Norin, and Postle (J. Graph Theory, 2019), wherein one must satisfy "enough'', as opposed to all, of the requested set of precolors. A graph G is epsilon-flexible for list size k if for any k-list assignment L, and any set S of L-requests, there is an L-coloring of G satisfying epsilon-fraction of the requests in S. It is conjectured that planar graphs are epsilon-flexible for list size 5, yet it is proved only for list size 6 and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masarik and show that planar graphs without K-4(-) are epsilon-flexible for list size 5. We also prove that planar graphs without 4-cycles and 3-cycle distance at least 2 are epsilon-flexible for list size 4. Finally, we introduce a new (slightly weaker) form of epsilon-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are epsilon-flexible for list size 5. (C) 2021 The Author(s). Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
1872-6771
Svazek periodika
306
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
120-132
Kód UT WoS článku
000712075000001
EID výsledku v databázi Scopus
2-s2.0-85122508527