Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Flexibility of planar graphs-Sharpening the tools to get lists of size four

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455170" target="_blank" >RIV/00216208:11320/22:10455170 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gC5wMmFvJZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gC5wMmFvJZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.dam.2021.09.021" target="_blank" >10.1016/j.dam.2021.09.021</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flexibility of planar graphs-Sharpening the tools to get lists of size four

  • Popis výsledku v původním jazyce

    A graph where each vertex v has a list L(v) of available colors is L-colorable if there is a proper coloring such that the color of v is in L(v) for each v. A graph is k-choosable if every assignment L of at least k colors to each vertex guarantees an L-coloring. Given a list assignment L, an L-request for a vertex v is a color c is an element of L(v). In this paper, we look at a variant of the widely studied class of precoloring extension problems from Dvorak, Norin, and Postle (J. Graph Theory, 2019), wherein one must satisfy &quot;enough&apos;&apos;, as opposed to all, of the requested set of precolors. A graph G is epsilon-flexible for list size k if for any k-list assignment L, and any set S of L-requests, there is an L-coloring of G satisfying epsilon-fraction of the requests in S. It is conjectured that planar graphs are epsilon-flexible for list size 5, yet it is proved only for list size 6 and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masarik and show that planar graphs without K-4(-) are epsilon-flexible for list size 5. We also prove that planar graphs without 4-cycles and 3-cycle distance at least 2 are epsilon-flexible for list size 4. Finally, we introduce a new (slightly weaker) form of epsilon-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are epsilon-flexible for list size 5. (C) 2021 The Author(s). Published by Elsevier B.V.

  • Název v anglickém jazyce

    Flexibility of planar graphs-Sharpening the tools to get lists of size four

  • Popis výsledku anglicky

    A graph where each vertex v has a list L(v) of available colors is L-colorable if there is a proper coloring such that the color of v is in L(v) for each v. A graph is k-choosable if every assignment L of at least k colors to each vertex guarantees an L-coloring. Given a list assignment L, an L-request for a vertex v is a color c is an element of L(v). In this paper, we look at a variant of the widely studied class of precoloring extension problems from Dvorak, Norin, and Postle (J. Graph Theory, 2019), wherein one must satisfy &quot;enough&apos;&apos;, as opposed to all, of the requested set of precolors. A graph G is epsilon-flexible for list size k if for any k-list assignment L, and any set S of L-requests, there is an L-coloring of G satisfying epsilon-fraction of the requests in S. It is conjectured that planar graphs are epsilon-flexible for list size 5, yet it is proved only for list size 6 and for certain subclasses of planar graphs. We give a stronger version of the main tool used in the proofs of the aforementioned results. By doing so, we improve upon a result by Masarik and show that planar graphs without K-4(-) are epsilon-flexible for list size 5. We also prove that planar graphs without 4-cycles and 3-cycle distance at least 2 are epsilon-flexible for list size 4. Finally, we introduce a new (slightly weaker) form of epsilon-flexibility where each vertex has exactly one request. In that setting, we provide a stronger tool and we demonstrate its usefulness to further extend the class of graphs that are epsilon-flexible for list size 5. (C) 2021 The Author(s). Published by Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

    1872-6771

  • Svazek periodika

    306

  • Číslo periodika v rámci svazku

    January

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    120-132

  • Kód UT WoS článku

    000712075000001

  • EID výsledku v databázi Scopus

    2-s2.0-85122508527