Multimodal Abstractive Summarization for How2 Videos
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405592" target="_blank" >RIV/00216208:11320/19:10405592 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multimodal Abstractive Summarization for How2 Videos
Popis výsledku v původním jazyce
In this paper, we study abstractive summarization for open-domain videos. Unlike the traditional text news summarization, the goal is less to "compress" text information but rather to provide a fluent textual summary of information that has been collected and fused from different source modalities, in our case video and audio transcripts (or text). We show how a multi-source sequence-to-sequence model with hierarchical attention can integrate information from different modalities into a coherent output, compare various models trained with different modalities and present pilot experiments on the How2 corpus of instructional videos. We also propose a new evaluation metric (Content F1) for abstractive summarization task that measures semantic adequacy rather than fluency of the summaries, which is covered by metrics like ROUGE and BLEU.
Název v anglickém jazyce
Multimodal Abstractive Summarization for How2 Videos
Popis výsledku anglicky
In this paper, we study abstractive summarization for open-domain videos. Unlike the traditional text news summarization, the goal is less to "compress" text information but rather to provide a fluent textual summary of information that has been collected and fused from different source modalities, in our case video and audio transcripts (or text). We show how a multi-source sequence-to-sequence model with hierarchical attention can integrate information from different modalities into a coherent output, compare various models trained with different modalities and present pilot experiments on the How2 corpus of instructional videos. We also propose a new evaluation metric (Content F1) for abstractive summarization task that measures semantic adequacy rather than fluency of the summaries, which is covered by metrics like ROUGE and BLEU.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
ISBN
978-1-950737-48-2
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
6587-6596
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg, PA, USA
Místo konání akce
Firenze, Italy
Datum konání akce
28. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—