Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AGRR 2019: Corpus for Gapping Resolution in Russian

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405594" target="_blank" >RIV/00216208:11320/19:10405594 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/W19-3705/" target="_blank" >https://www.aclweb.org/anthology/W19-3705/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AGRR 2019: Corpus for Gapping Resolution in Russian

  • Popis výsledku v původním jazyce

    This paper provides a comprehensive overview of the gapping dataset for Russian that consists of 7.5k sentences with gapping (as well as 15k relevant negative sentences) and comprises data from various genres: news, fiction, social media and technical texts. The dataset was prepared for the Automatic Gapping Resolution Shared Task for Russian (AGRR-2019) - a competition aimed at stimulating the development of NLP tools and methods for processing of ellipsis. In this paper, we pay special attention to the gapping resolution methods that were introduced within the shared task as well as an alternative test set that illustrates that our corpus is a diverse and representative subset of Russian language gapping sufficient for effective utilization of machine learning techniques.

  • Název v anglickém jazyce

    AGRR 2019: Corpus for Gapping Resolution in Russian

  • Popis výsledku anglicky

    This paper provides a comprehensive overview of the gapping dataset for Russian that consists of 7.5k sentences with gapping (as well as 15k relevant negative sentences) and comprises data from various genres: news, fiction, social media and technical texts. The dataset was prepared for the Automatic Gapping Resolution Shared Task for Russian (AGRR-2019) - a competition aimed at stimulating the development of NLP tools and methods for processing of ellipsis. In this paper, we pay special attention to the gapping resolution methods that were introduced within the shared task as well as an alternative test set that illustrates that our corpus is a diverse and representative subset of Russian language gapping sufficient for effective utilization of machine learning techniques.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Balto-Slavic Natural Language Processing

  • ISBN

    978-1-950737-41-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    35-43

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg, PA, USA

  • Místo konání akce

    Firenze, Italy

  • Datum konání akce

    2. 8. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku