Distinguishing the Types of Coordinated Verbs with a Shared Argument by means of New ZeugBERT Language Model and ZeugmaDataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14210%2F22%3A00126225" target="_blank" >RIV/00216224:14210/22:00126225 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/SSW220022" target="_blank" >http://dx.doi.org/10.3233/SSW220022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/SSW220022" target="_blank" >10.3233/SSW220022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distinguishing the Types of Coordinated Verbs with a Shared Argument by means of New ZeugBERT Language Model and ZeugmaDataset
Popis výsledku v původním jazyce
Sentences where two verbs share a single argument represent a complex and highly ambiguous syntactic phenomenon. The argument sharing relations must be considered during the detection process from both a syntactic and semantic perspective. Such expressions can represent ungrammatical constructions, denoted as zeugma, or idiomatic elliptical phrase combinations. Rule-based classification methods prove ineffective because of the necessity to reflect meaning relations of the analyzed sentence constituents. This paper presents the development and evaluation of ZeugBERT, a language model tuned for the sentence classification task using a pre-trained Czech transformer model for language representation. The model was trained with a newly prepared dataset, which is also published with this paper, of 7,849 Czech sentences to classify Czech syntactic structures containing coordinated verbs that share a valency argument (or an optional adjunct) in the context of coordination. ZeugBERT here reaches $88,%$ of test set accuracy. The text describes the process of the new dataset creation and annotation, and it offers a detailed error analysis of the developed classification model.
Název v anglickém jazyce
Distinguishing the Types of Coordinated Verbs with a Shared Argument by means of New ZeugBERT Language Model and ZeugmaDataset
Popis výsledku anglicky
Sentences where two verbs share a single argument represent a complex and highly ambiguous syntactic phenomenon. The argument sharing relations must be considered during the detection process from both a syntactic and semantic perspective. Such expressions can represent ungrammatical constructions, denoted as zeugma, or idiomatic elliptical phrase combinations. Rule-based classification methods prove ineffective because of the necessity to reflect meaning relations of the analyzed sentence constituents. This paper presents the development and evaluation of ZeugBERT, a language model tuned for the sentence classification task using a pre-trained Czech transformer model for language representation. The model was trained with a newly prepared dataset, which is also published with this paper, of 7,849 Czech sentences to classify Czech syntactic structures containing coordinated verbs that share a valency argument (or an optional adjunct) in the context of coordination. ZeugBERT here reaches $88,%$ of test set accuracy. The text describes the process of the new dataset creation and annotation, and it offers a detailed error analysis of the developed classification model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
60203 - Linguistics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Towards a Knowledge-Aware AI : SEMANTiCS 2022 — Proceedings of the 18th International Conference on Semantic Systems, 13-15 September 2022, Vienna, Austria
ISBN
9781643683201
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
206-218
Název nakladatele
IOS Press
Místo vydání
Amsterdam
Místo konání akce
Vienna, Austria
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—