Neural Architectures for Nested NER through Linearization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405609" target="_blank" >RIV/00216208:11320/19:10405609 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/P19-1527.pdf" target="_blank" >https://www.aclweb.org/anthology/P19-1527.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/P19-1527" target="_blank" >10.18653/v1/P19-1527</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Architectures for Nested NER through Linearization
Popis výsledku v původním jazyce
We propose two neural network architectures for nested named entity recognition (NER), a setting in which named entities may overlap and also be labeled with more than one label. We encode the nested labels using a linearized scheme. In our first proposed approach, the nested labels are modeled as multilabels corresponding to the Cartesian product of the nested labels in a standard LSTM-CRF architecture. In the second one, the nested NER is viewed as a sequence-to-sequence problem, in which the input sequence consists of the tokens and output sequence of the labels, using hard attention on the word whose label is being predicted. The proposed methods outperform the nested NER state of the art on four corpora: ACE-2004, ACE-2005, GENIA and Czech CNEC. We also enrich our architectures with the recently published contextual embeddings: ELMo, BERT and Flair, reaching further improvements for the four nested entity corpora. In addition, we report flat NER state-of-the-art results for CoNLL-2002 Dutch and S
Název v anglickém jazyce
Neural Architectures for Nested NER through Linearization
Popis výsledku anglicky
We propose two neural network architectures for nested named entity recognition (NER), a setting in which named entities may overlap and also be labeled with more than one label. We encode the nested labels using a linearized scheme. In our first proposed approach, the nested labels are modeled as multilabels corresponding to the Cartesian product of the nested labels in a standard LSTM-CRF architecture. In the second one, the nested NER is viewed as a sequence-to-sequence problem, in which the input sequence consists of the tokens and output sequence of the labels, using hard attention on the word whose label is being predicted. The proposed methods outperform the nested NER state of the art on four corpora: ACE-2004, ACE-2005, GENIA and Czech CNEC. We also enrich our architectures with the recently published contextual embeddings: ELMo, BERT and Flair, reaching further improvements for the four nested entity corpora. In addition, we report flat NER state-of-the-art results for CoNLL-2002 Dutch and S
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
ISBN
978-1-950737-48-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
5326-5331
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg, PA, USA
Místo konání akce
Firenze, Italy
Datum konání akce
28. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000493046107085