Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Architectures for Nested NER through Linearization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10405609" target="_blank" >RIV/00216208:11320/19:10405609 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/P19-1527.pdf" target="_blank" >https://www.aclweb.org/anthology/P19-1527.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/P19-1527" target="_blank" >10.18653/v1/P19-1527</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Architectures for Nested NER through Linearization

  • Popis výsledku v původním jazyce

    We propose two neural network architectures for nested named entity recognition (NER), a setting in which named entities may overlap and also be labeled with more than one label. We encode the nested labels using a linearized scheme. In our first proposed approach, the nested labels are modeled as multilabels corresponding to the Cartesian product of the nested labels in a standard LSTM-CRF architecture. In the second one, the nested NER is viewed as a sequence-to-sequence problem, in which the input sequence consists of the tokens and output sequence of the labels, using hard attention on the word whose label is being predicted. The proposed methods outperform the nested NER state of the art on four corpora: ACE-2004, ACE-2005, GENIA and Czech CNEC. We also enrich our architectures with the recently published contextual embeddings: ELMo, BERT and Flair, reaching further improvements for the four nested entity corpora. In addition, we report flat NER state-of-the-art results for CoNLL-2002 Dutch and S

  • Název v anglickém jazyce

    Neural Architectures for Nested NER through Linearization

  • Popis výsledku anglicky

    We propose two neural network architectures for nested named entity recognition (NER), a setting in which named entities may overlap and also be labeled with more than one label. We encode the nested labels using a linearized scheme. In our first proposed approach, the nested labels are modeled as multilabels corresponding to the Cartesian product of the nested labels in a standard LSTM-CRF architecture. In the second one, the nested NER is viewed as a sequence-to-sequence problem, in which the input sequence consists of the tokens and output sequence of the labels, using hard attention on the word whose label is being predicted. The proposed methods outperform the nested NER state of the art on four corpora: ACE-2004, ACE-2005, GENIA and Czech CNEC. We also enrich our architectures with the recently published contextual embeddings: ELMo, BERT and Flair, reaching further improvements for the four nested entity corpora. In addition, we report flat NER state-of-the-art results for CoNLL-2002 Dutch and S

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

  • ISBN

    978-1-950737-48-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    5326-5331

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg, PA, USA

  • Místo konání akce

    Firenze, Italy

  • Datum konání akce

    28. 7. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000493046107085