Building Accurate Physics-based Face Models from Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10407992" target="_blank" >RIV/00216208:11320/19:10407992 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P~ui_0xA1G" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P~ui_0xA1G</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3340256" target="_blank" >10.1145/3340256</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Building Accurate Physics-based Face Models from Data
Popis výsledku v původním jazyce
The human face is an anatomical system exhibiting heterogenous and anisotropic mechanical behavior. This leads to complex deformations even in a neutral facial expression due to external forces such as gravity. We start by building a volumetric model from magnetic resonance images of a neutral facial expression. To obtain data on facial deformations we capture and register 3D scans of the face with different gravity directions and with various facial expressions. Our main contribution consists in solving an inverse physics problem where we learn mechanical properties of the face from our training data (3D scans). Specifically, we learn heterogenous stiffness and prestrain (which introduces anisotropy). The generalization capability of our resulting physics-based model is tested on 3D scans. We demonstrate that our model generates predictions of facial deformations more accurately than recent related physics-based techniques.
Název v anglickém jazyce
Building Accurate Physics-based Face Models from Data
Popis výsledku anglicky
The human face is an anatomical system exhibiting heterogenous and anisotropic mechanical behavior. This leads to complex deformations even in a neutral facial expression due to external forces such as gravity. We start by building a volumetric model from magnetic resonance images of a neutral facial expression. To obtain data on facial deformations we capture and register 3D scans of the face with different gravity directions and with various facial expressions. Our main contribution consists in solving an inverse physics problem where we learn mechanical properties of the face from our training data (3D scans). Specifically, we learn heterogenous stiffness and prestrain (which introduces anisotropy). The generalization capability of our resulting physics-based model is tested on 3D scans. We demonstrate that our model generates predictions of facial deformations more accurately than recent related physics-based techniques.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the ACM on Computer Graphics and Interactive Techniques
ISSN
2577-6193
e-ISSN
—
Svazek periodika
2019 / 2
Číslo periodika v rámci svazku
2019 / 7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
"nestrankovano"
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—