On SAT-Based Approaches for Multi-Agent Path Finding with the Sum-of-Costs Objective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10408110" target="_blank" >RIV/00216208:11320/19:10408110 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On SAT-Based Approaches for Multi-Agent Path Finding with the Sum-of-Costs Objective
Popis výsledku v původním jazyce
Multi-Agent Path Finding (MAPF) deals with the problem of finding collision-free paths for a set of agents. Each agent moves from its start location to its destination location in a shared environment represented by a graph. Reductionbased solving approaches for MAPF, for example, reduction to SAT, exploit a time-expanded layered graph, where each layer corresponds to specific time. Hence, these approaches are natural for minimizing Makespan (the shortest time until all agents reach their destinations). Modeling the other frequently used objective, namely Sum of Costs (SoC; the sum of paths lengths of all agents) is more difficult as the solution with the smallest SoC may not be reached in the timeexpanded graph with the smallest Makespan. In this paper we suggest a novel approach to estimate the Makespan, that guarantees the existence of a SoC-optimal solution. We also propose a novel pre-processing technique reducing the number of variables in the SAT model. The approach is empirically compared with an existing reduction-based method as well as with the state-of-the-art search-based optimal MAPF solver.
Název v anglickém jazyce
On SAT-Based Approaches for Multi-Agent Path Finding with the Sum-of-Costs Objective
Popis výsledku anglicky
Multi-Agent Path Finding (MAPF) deals with the problem of finding collision-free paths for a set of agents. Each agent moves from its start location to its destination location in a shared environment represented by a graph. Reductionbased solving approaches for MAPF, for example, reduction to SAT, exploit a time-expanded layered graph, where each layer corresponds to specific time. Hence, these approaches are natural for minimizing Makespan (the shortest time until all agents reach their destinations). Modeling the other frequently used objective, namely Sum of Costs (SoC; the sum of paths lengths of all agents) is more difficult as the solution with the smallest SoC may not be reached in the timeexpanded graph with the smallest Makespan. In this paper we suggest a novel approach to estimate the Makespan, that guarantees the existence of a SoC-optimal solution. We also propose a novel pre-processing technique reducing the number of variables in the SAT model. The approach is empirically compared with an existing reduction-based method as well as with the state-of-the-art search-based optimal MAPF solver.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-02183S" target="_blank" >GA19-02183S: Chytré roje: od teorie k praxi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Twelfth International Symposium on Combinatorial Search
ISBN
978-1-57735-808-4
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
10-17
Název nakladatele
AAAI Press
Místo vydání
neuveden
Místo konání akce
Napa
Datum konání akce
16. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—