How to Learn Picture Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10424549" target="_blank" >RIV/00216208:11320/19:10424549 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ELNCPYr0B7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ELNCPYr0B7</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to Learn Picture Languages
Popis výsledku v původním jazyce
Analysis of sentences in a natural language is often based on similar methods as analysis of formal languages. Analogically, analysis of pictures could be based on analysis of formal picture languages. However, the field of formal picture languages is not developed enough for this purpose. This paper presents several models of automata accepting two-dimensional languages and outlines their learning capabilities. Further, it examines the possibility of transforming a two-dimensional language into a one-dimensional language and applying machine learning techniques in a single dimension. In this paper, we propose a new representation for formal picture languages consisting of two components - a picture-to-string function and a string language. The function rewrites any two-dimensional picture into a string. A picture language is then the set of all pictures that the function maps into the given string language. Using this representation, picture languages can be learned by applying methods of grammatical inference for string languages.
Název v anglickém jazyce
How to Learn Picture Languages
Popis výsledku anglicky
Analysis of sentences in a natural language is often based on similar methods as analysis of formal languages. Analogically, analysis of pictures could be based on analysis of formal picture languages. However, the field of formal picture languages is not developed enough for this purpose. This paper presents several models of automata accepting two-dimensional languages and outlines their learning capabilities. Further, it examines the possibility of transforming a two-dimensional language into a one-dimensional language and applying machine learning techniques in a single dimension. In this paper, we propose a new representation for formal picture languages consisting of two components - a picture-to-string function and a string language. The function rewrites any two-dimensional picture into a string. A picture language is then the set of all pictures that the function maps into the given string language. Using this representation, picture languages can be learned by applying methods of grammatical inference for string languages.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Research in Computing Science
ISSN
1870-4069
e-ISSN
—
Svazek periodika
148
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
MX - Spojené státy mexické
Počet stran výsledku
12
Strana od-do
115-126
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—