Learning Picture Languages Using Dimensional Reduction
Popis výsledku
—
Klíčová slova
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=lXccYpSkil
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Picture Languages Using Dimensional Reduction
Popis výsledku v původním jazyce
One-dimensional (string) formal languages and their learning have been studied in considerable depth. However, the knowledge of their two-dimensional (picture) counterpart, which retains similar importance, is lacking. We investigate the problem of learning formal two-dimensional picture languages by applying learning methods for one-dimensional (string) languages. We formalize the transcription process from a two-dimensional input picture into a string and propose a few adaptations to it. These proposals are then tested in a series of experiments, and their outcomes are compared. Finally, these methods are applied to a practical problem and an automaton for recognizing a part of the MNIST dataset is learned. The obtained results show improvements in the topic and the potential to use the learning of automata in fitting problems.
Název v anglickém jazyce
Learning Picture Languages Using Dimensional Reduction
Popis výsledku anglicky
One-dimensional (string) formal languages and their learning have been studied in considerable depth. However, the knowledge of their two-dimensional (picture) counterpart, which retains similar importance, is lacking. We investigate the problem of learning formal two-dimensional picture languages by applying learning methods for one-dimensional (string) languages. We formalize the transcription process from a two-dimensional input picture into a string and propose a few adaptations to it. These proposals are then tested in a series of experiments, and their outcomes are compared. Finally, these methods are applied to a practical problem and an automaton for recognizing a part of the MNIST dataset is learned. The obtained results show improvements in the topic and the potential to use the learning of automata in fitting problems.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Inteligencia Artificial
ISSN
1988-3064
e-ISSN
1988-3064
Svazek periodika
26
Číslo periodika v rámci svazku
71
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
16
Strana od-do
59-74
Kód UT WoS článku
000984251300001
EID výsledku v databázi Scopus
2-s2.0-85159680544
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Rok uplatnění
2023