Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Part of Speech Tagging in Urdu: Comparison of Machine and Deep Learning Approaches

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427036" target="_blank" >RIV/00216208:11320/19:10427036 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Part of Speech Tagging in Urdu: Comparison of Machine and Deep Learning Approaches

  • Popis výsledku v původním jazyce

    In Urdu, part of speech (POS) tagging is a challenging task as it is both inflectionally and derivationally rich morphological language. Verbs are generally conceived a highly inflected object in Urdu comparatively to nouns. POS tagging is used as a preliminary linguistic text analysis in diverse natural language processing domains such as speech processing, information extraction, machine translation, and others. It is a task that first identifies appropriate syntactic categories for each word in running text and second assigns the predicted syntactic tag to all concerned words. The current work is the extension of our previous work. Previously, we presented conditional random field (CRF)-based POS tagger with both language dependent and independent feature set. However, in the current study, we offer: 1) the implementation of both machine and deep learning models for Urdu POS tagging task with well-balanced language-independent feature set and 2) to highlight diverse challenges which cause Urdu POS task a challenging one. In this research, we demonstrated the effectiveness of machine learning and deep learning models for Urdu POS task. Empirically, we have evaluated the performance of all models on two benchmark datasets. The core models evaluated in this study are CRF, support vector machine (SVM), two variants of the deep recurrent neural network (DRNN), and a variant of n-gram Markov model the bigram hidden Markov model (HMM). The two variants of DRRN models evaluated include forward long short-term memory (LSTM)-RNN and LSTM-RNN with CRF output.

  • Název v anglickém jazyce

    Part of Speech Tagging in Urdu: Comparison of Machine and Deep Learning Approaches

  • Popis výsledku anglicky

    In Urdu, part of speech (POS) tagging is a challenging task as it is both inflectionally and derivationally rich morphological language. Verbs are generally conceived a highly inflected object in Urdu comparatively to nouns. POS tagging is used as a preliminary linguistic text analysis in diverse natural language processing domains such as speech processing, information extraction, machine translation, and others. It is a task that first identifies appropriate syntactic categories for each word in running text and second assigns the predicted syntactic tag to all concerned words. The current work is the extension of our previous work. Previously, we presented conditional random field (CRF)-based POS tagger with both language dependent and independent feature set. However, in the current study, we offer: 1) the implementation of both machine and deep learning models for Urdu POS tagging task with well-balanced language-independent feature set and 2) to highlight diverse challenges which cause Urdu POS task a challenging one. In this research, we demonstrated the effectiveness of machine learning and deep learning models for Urdu POS task. Empirically, we have evaluated the performance of all models on two benchmark datasets. The core models evaluated in this study are CRF, support vector machine (SVM), two variants of the deep recurrent neural network (DRNN), and a variant of n-gram Markov model the bigram hidden Markov model (HMM). The two variants of DRRN models evaluated include forward long short-term memory (LSTM)-RNN and LSTM-RNN with CRF output.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů