A deep learning approach to building a framework for Urdu POS and NER
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AS6XVG72I" target="_blank" >RIV/00216208:11320/23:S6XVG72I - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148060826&doi=10.3233%2fJIFS-211275&partnerID=40&md5=d3e6bc04e5767e2756639ec499867882" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148060826&doi=10.3233%2fJIFS-211275&partnerID=40&md5=d3e6bc04e5767e2756639ec499867882</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/jifs-211275" target="_blank" >10.3233/jifs-211275</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A deep learning approach to building a framework for Urdu POS and NER
Popis výsledku v původním jazyce
"The study examines various studies on Named Entity Recognition (NER) and Part of Speech (POS) tagging for the Urdu language conducted by academics and researchers. POS and NER tagging for Urdu still faces obstacles in terms of increasing accuracy while lowering false-positive rates and labelling unknown terms, despite the efforts of numerous researchers. In addition, ambiguity exists when tagging terms with different contextual meanings within a sentence. Due to the fact that Urdu is an inflectional, derivational, morphologically rich, and context-sensitive language, the existing models, such as Linguistic rule application, N-gram Markov model, Tree Tagger, random forest (RF) tagger, etc., were unable to produce accurate experimental results on Urdu language data. The significance of this study is that it fills a gap in the literature concerning the lack of POS and NER tagging for the Urdu language. For Urdu POS and NER tagging, we propose a deep learning model with a well-balanced set of language-independent features as well as a survey of important Urdu POS/NER techniques. In addition, this is the first study to use residual biDirectional residual Long short-term memory (residual biLSTM) architecture trained on the Urmono dataset in conjunction with the randomly initialised word2vec, fastText and mBERT embeddings are utilised to generate word or character vectors.For each experiment, the paper also employs the evaluation methods of Macro-F1, precision, precision, and recall. The proposed method with mbert embedding as word vectors provides best results of F1 score for POS and NER at 91.11% and 99.11% respectively. Also, the accuracy, precision and recall for POS are reported at 94.85%, 91.79% and 90.77%. Similarly, the accuracy, precision and recall for NER of the proposed model are reported at 99.77%, 98.78% and 99.45% respectively, which are higher than baseline models. © 2023 - IOS Press. All rights reserved."
Název v anglickém jazyce
A deep learning approach to building a framework for Urdu POS and NER
Popis výsledku anglicky
"The study examines various studies on Named Entity Recognition (NER) and Part of Speech (POS) tagging for the Urdu language conducted by academics and researchers. POS and NER tagging for Urdu still faces obstacles in terms of increasing accuracy while lowering false-positive rates and labelling unknown terms, despite the efforts of numerous researchers. In addition, ambiguity exists when tagging terms with different contextual meanings within a sentence. Due to the fact that Urdu is an inflectional, derivational, morphologically rich, and context-sensitive language, the existing models, such as Linguistic rule application, N-gram Markov model, Tree Tagger, random forest (RF) tagger, etc., were unable to produce accurate experimental results on Urdu language data. The significance of this study is that it fills a gap in the literature concerning the lack of POS and NER tagging for the Urdu language. For Urdu POS and NER tagging, we propose a deep learning model with a well-balanced set of language-independent features as well as a survey of important Urdu POS/NER techniques. In addition, this is the first study to use residual biDirectional residual Long short-term memory (residual biLSTM) architecture trained on the Urmono dataset in conjunction with the randomly initialised word2vec, fastText and mBERT embeddings are utilised to generate word or character vectors.For each experiment, the paper also employs the evaluation methods of Macro-F1, precision, precision, and recall. The proposed method with mbert embedding as word vectors provides best results of F1 score for POS and NER at 91.11% and 99.11% respectively. Also, the accuracy, precision and recall for POS are reported at 94.85%, 91.79% and 90.77%. Similarly, the accuracy, precision and recall for NER of the proposed model are reported at 99.77%, 98.78% and 99.45% respectively, which are higher than baseline models. © 2023 - IOS Press. All rights reserved."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Journal of Intelligent and Fuzzy Systems"
ISSN
1064-1246
e-ISSN
—
Svazek periodika
44
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
3341-3351
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85148060826