Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

NeuMorph: Neural Morphological Tagging for Low-Resource Languages—An Experimental Study for Indic Languages

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427037" target="_blank" >RIV/00216208:11320/19:10427037 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1145/3342354" target="_blank" >https://doi.org/10.1145/3342354</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    NeuMorph: Neural Morphological Tagging for Low-Resource Languages&#x2014;An Experimental Study for Indic Languages

  • Popis výsledku v původním jazyce

    This article deals with morphological tagging for low-resource languages. For this purpose, five Indic languages are taken as reference. In addition, two severely resource-poor languages, Coptic and Kurmanji, are also considered. The task entails prediction of the morphological tag (case, degree, gender, etc.) of an in-context word. We hypothesize that to predict the tag of a word, considering its longer context such as the entire sentence is not always necessary. In this light, the usefulness of convolution operation is studied resulting in a convolutional neural network (CNN) based morphological tagger. Our proposed model (BLSTM-CNN) achieves insightful results in comparison to the present state-of-the-art. Following the recent trend, the task is carried out under three different settings: single language, across languages, and across keys. Whereas the previous models used only character-level features, we show that the addition of word vectors along with character-level embedding significantly improves the performance of all the models. Since obtaining high-quality word vectors for resource-poor languages remains a challenge, in that scenario, the proposed character-level BLSTM-CNN proves to be most effective.1

  • Název v anglickém jazyce

    NeuMorph: Neural Morphological Tagging for Low-Resource Languages&#x2014;An Experimental Study for Indic Languages

  • Popis výsledku anglicky

    This article deals with morphological tagging for low-resource languages. For this purpose, five Indic languages are taken as reference. In addition, two severely resource-poor languages, Coptic and Kurmanji, are also considered. The task entails prediction of the morphological tag (case, degree, gender, etc.) of an in-context word. We hypothesize that to predict the tag of a word, considering its longer context such as the entire sentence is not always necessary. In this light, the usefulness of convolution operation is studied resulting in a convolutional neural network (CNN) based morphological tagger. Our proposed model (BLSTM-CNN) achieves insightful results in comparison to the present state-of-the-art. Following the recent trend, the task is carried out under three different settings: single language, across languages, and across keys. Whereas the previous models used only character-level features, we show that the addition of word vectors along with character-level embedding significantly improves the performance of all the models. Since obtaining high-quality word vectors for resource-poor languages remains a challenge, in that scenario, the proposed character-level BLSTM-CNN proves to be most effective.1

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů