Language-Independent Approach for Morphological Disambiguation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3ASH9DW6S4" target="_blank" >RIV/00216208:11320/22:SH9DW6S4 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.coling-1.470" target="_blank" >https://aclanthology.org/2022.coling-1.470</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Language-Independent Approach for Morphological Disambiguation
Popis výsledku v původním jazyce
This paper presents a language-independent approach for morphological disambiguation which has been regarded as an extension of POS tagging, jointly predicting complex morphological tags. In the proposed approach, all words, roots, POS and morpheme tags are embedded into vectors, and contexts representations from surface word and morphological contexts are calculated. Then the inner products between analyses and the context's representations are computed to perform the disambiguation. The underlying hypothesis is that the correct morphological analysis should be closer to the context in a vector space. Experimental results show that the proposed approach outperforms the existing models on seven different language datasets. Concretely, compared with the baselines of MarMot and a sophisticated neural model (Seq2Seq), the proposed approach achieves around 6% improvement in average accuracy for all languages while running about 6 and 33 times faster than MarMot and Seq2Seq, respectively.
Název v anglickém jazyce
Language-Independent Approach for Morphological Disambiguation
Popis výsledku anglicky
This paper presents a language-independent approach for morphological disambiguation which has been regarded as an extension of POS tagging, jointly predicting complex morphological tags. In the proposed approach, all words, roots, POS and morpheme tags are embedded into vectors, and contexts representations from surface word and morphological contexts are calculated. Then the inner products between analyses and the context's representations are computed to perform the disambiguation. The underlying hypothesis is that the correct morphological analysis should be closer to the context in a vector space. Experimental results show that the proposed approach outperforms the existing models on seven different language datasets. Concretely, compared with the baselines of MarMot and a sophisticated neural model (Seq2Seq), the proposed approach achieves around 6% improvement in average accuracy for all languages while running about 6 and 33 times faster than MarMot and Seq2Seq, respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 29th International Conference on Computational Linguistics
ISBN
—
ISSN
2951-2093
e-ISSN
—
Počet stran výsledku
10
Strana od-do
5288-5297
Název nakladatele
International Committee on Computational Linguistics
Místo vydání
—
Místo konání akce
Gyeongju, Republic of Korea
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—