Probing Multilingual Sentence Representations With X-Probe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427071" target="_blank" >RIV/00216208:11320/19:10427071 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/W19-4318" target="_blank" >https://www.aclweb.org/anthology/W19-4318</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probing Multilingual Sentence Representations With X-Probe
Popis výsledku v původním jazyce
This paper extends the task of probing sentence representations for linguistic insight in a multilingual domain. In doing so, we make two contributions: first, we provide datasets for multilingual probing, derived from Wikipedia, in five languages, viz. English, French, German, Spanish and Russian. Second, we evaluate six sentence encoders for each language, each trained by mapping sentence representations to English sentence representations, using sentences in a parallel corpus. We discover that cross-lingually mapped representations are often better at retaining certain linguistic information than representations derived from English encoders trained on natural language inference (NLI) as a downstream task.
Název v anglickém jazyce
Probing Multilingual Sentence Representations With X-Probe
Popis výsledku anglicky
This paper extends the task of probing sentence representations for linguistic insight in a multilingual domain. In doing so, we make two contributions: first, we provide datasets for multilingual probing, derived from Wikipedia, in five languages, viz. English, French, German, Spanish and Russian. Second, we evaluate six sentence encoders for each language, each trained by mapping sentence representations to English sentence representations, using sentences in a parallel corpus. We discover that cross-lingually mapped representations are often better at retaining certain linguistic information than representations derived from English encoders trained on natural language inference (NLI) as a downstream task.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů