Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multilingual Probing of Deep Pre-Trained Contextual Encoders

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427143" target="_blank" >RIV/00216208:11320/19:10427143 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/W19-6205" target="_blank" >https://www.aclweb.org/anthology/W19-6205</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multilingual Probing of Deep Pre-Trained Contextual Encoders

  • Popis výsledku v původním jazyce

    Encoders that generate representations based on context have, in recent years, benefited from adaptations that allow for pre-training on large text corpora. Earlier work on evaluating fixed-length sentence representations has included the use of `probing&apos; tasks, that use diagnostic classifiers to attempt to quantify the extent to which these encoders capture specific linguistic phenomena. The principle of probing has also resulted in extended evaluations that include relatively newer word-level pre-trained encoders. We build on probing tasks established in the literature and comprehensively evaluate and analyse – from a typological perspective amongst others – multilingual variants of existing encoders on probing datasets constructed for 6 non-English languages. Specifically, we probe each layer of a multiple monolingual RNN-based ELMo models, the transformer-based BERT&apos;s cased and uncased multilingual variants, and a variant of BERT that uses a cross-lingual modelling scheme (XLM).

  • Název v anglickém jazyce

    Multilingual Probing of Deep Pre-Trained Contextual Encoders

  • Popis výsledku anglicky

    Encoders that generate representations based on context have, in recent years, benefited from adaptations that allow for pre-training on large text corpora. Earlier work on evaluating fixed-length sentence representations has included the use of `probing&apos; tasks, that use diagnostic classifiers to attempt to quantify the extent to which these encoders capture specific linguistic phenomena. The principle of probing has also resulted in extended evaluations that include relatively newer word-level pre-trained encoders. We build on probing tasks established in the literature and comprehensively evaluate and analyse – from a typological perspective amongst others – multilingual variants of existing encoders on probing datasets constructed for 6 non-English languages. Specifically, we probe each layer of a multiple monolingual RNN-based ELMo models, the transformer-based BERT&apos;s cased and uncased multilingual variants, and a variant of BERT that uses a cross-lingual modelling scheme (XLM).

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů