Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427082" target="_blank" >RIV/00216208:11320/19:10427082 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/W19-0417" target="_blank" >https://www.aclweb.org/anthology/W19-0417</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles
Popis výsledku v původním jazyce
We describe a transfer method based on annotation projection to develop a dependency-based semantic role labeling system for languages for which no supervised linguistic information other than parallel data is available. Unlike previous work that presumes the availability of supervised features such as lemmas, part-of-speech tags, and dependency parse trees, we only make use of word and character features. Our deep model considers using character-based representations as well as unsupervised stem embeddings to alleviate the need for supervised features. Our experiments outperform a state-of-the-art method that uses supervised lexico-syntactic features on 6 out of 7 languages in the Universal Proposition Bank.
Název v anglickém jazyce
Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles
Popis výsledku anglicky
We describe a transfer method based on annotation projection to develop a dependency-based semantic role labeling system for languages for which no supervised linguistic information other than parallel data is available. Unlike previous work that presumes the availability of supervised features such as lemmas, part-of-speech tags, and dependency parse trees, we only make use of word and character features. Our deep model considers using character-based representations as well as unsupervised stem embeddings to alleviate the need for supervised features. Our experiments outperform a state-of-the-art method that uses supervised lexico-syntactic features on 6 out of 7 languages in the Universal Proposition Bank.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů