Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Polyglot Contextual Representations Improve Crosslingual Transfer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427115" target="_blank" >RIV/00216208:11320/19:10427115 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/N19-1392" target="_blank" >https://www.aclweb.org/anthology/N19-1392</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Polyglot Contextual Representations Improve Crosslingual Transfer

  • Popis výsledku v původním jazyce

    We introduce Rosita, a method to produce multilingual contextual word representations by training a single language model on text from multiple languages. Our method combines the advantages of contextual word representations with those of multilingual representation learning. We produce language models from dissimilar language pairs (English/Arabic and English/Chinese) and use them in dependency parsing, semantic role labeling, and named entity recognition, with comparisons to monolingual and non-contextual variants. Our results provide further evidence for the benefits of polyglot learning, in which representations are shared across multiple languages.

  • Název v anglickém jazyce

    Polyglot Contextual Representations Improve Crosslingual Transfer

  • Popis výsledku anglicky

    We introduce Rosita, a method to produce multilingual contextual word representations by training a single language model on text from multiple languages. Our method combines the advantages of contextual word representations with those of multilingual representation learning. We produce language models from dissimilar language pairs (English/Arabic and English/Chinese) and use them in dependency parsing, semantic role labeling, and named entity recognition, with comparisons to monolingual and non-contextual variants. Our results provide further evidence for the benefits of polyglot learning, in which representations are shared across multiple languages.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů