Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combining Static and Contextualised Multilingual Embeddings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457003" target="_blank" >RIV/00216208:11320/22:10457003 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2022.findings-acl.182" target="_blank" >https://aclanthology.org/2022.findings-acl.182</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18653/v1/2022.findings-acl.182" target="_blank" >10.18653/v1/2022.findings-acl.182</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combining Static and Contextualised Multilingual Embeddings

  • Popis výsledku v původním jazyce

    Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text.

  • Název v anglickém jazyce

    Combining Static and Contextualised Multilingual Embeddings

  • Popis výsledku anglicky

    Static and contextual multilingual embeddings have complementary strengths. Static embeddings, while less expressive than contextual language models, can be more straightforwardly aligned across multiple languages. We combine the strengths of static and contextual models to improve multilingual representations. We extract static embeddings for 40 languages from XLM-R, validate those embeddings with cross-lingual word retrieval, and then align them using VecMap. This results in high-quality, highly multilingual static embeddings. Then we apply a novel continued pre-training approach to XLM-R, leveraging the high quality alignment of our static embeddings to better align the representation space of XLM-R. We show positive results for multiple complex semantic tasks. We release the static embeddings and the continued pre-training code. Unlike most previous work, our continued pre-training approach does not require parallel text.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Findings of the Association for Computational Linguistics: ACL 2022

  • ISBN

    978-1-955917-25-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

    2316-2329

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

    Stroudsburg, PA, USA

  • Místo konání akce

    Dublin, Ireland

  • Datum konání akce

    22. 5. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000828767402030