Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427134" target="_blank" >RIV/00216208:11320/19:10427134 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.aclweb.org/anthology/D19-5515" target="_blank" >https://www.aclweb.org/anthology/D19-5515</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media

  • Popis výsledku v původním jazyce

    Existing natural language processing systems have often been designed with standard texts in mind. However, when these tools are used on the substantially different texts from social media, their performance drops dramatically. One solution is to translate social media data to standard language before processing, this is also called normalization. It is well-known that this improves performance for many natural language processing tasks on social media data. However, little is known about which types of normalization replacements have the most effect. Furthermore, it is unknown what the weaknesses of existing lexical normalization systems are in an extrinsic setting. In this paper, we analyze the effect of manual as well as automatic lexical normalization for dependency parsing. After our analysis, we conclude that for most categories, automatic normalization scores close to manually annotated normalization and that small annotation differences are important to take into consideration when exploiting normalization in a pipeline setup.

  • Název v anglickém jazyce

    An In-depth Analysis of the Effect of Lexical Normalization on the Dependency Parsing of Social Media

  • Popis výsledku anglicky

    Existing natural language processing systems have often been designed with standard texts in mind. However, when these tools are used on the substantially different texts from social media, their performance drops dramatically. One solution is to translate social media data to standard language before processing, this is also called normalization. It is well-known that this improves performance for many natural language processing tasks on social media data. However, little is known about which types of normalization replacements have the most effect. Furthermore, it is unknown what the weaknesses of existing lexical normalization systems are in an extrinsic setting. In this paper, we analyze the effect of manual as well as automatic lexical normalization for dependency parsing. After our analysis, we conclude that for most categories, automatic normalization scores close to manually annotated normalization and that small annotation differences are important to take into consideration when exploiting normalization in a pipeline setup.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů