Introducing a Gold Standard Corpus from Young Multilinguals for the Evaluation of Automatic UD-PoS Taggers for Italian
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00125291" target="_blank" >RIV/00216224:14330/21:00125291 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-3033/paper13.pdf" target="_blank" >http://ceur-ws.org/Vol-3033/paper13.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Introducing a Gold Standard Corpus from Young Multilinguals for the Evaluation of Automatic UD-PoS Taggers for Italian
Popis výsledku v původním jazyce
Part-of-speech (PoS) tagging constitutes a common task in Natural Language Processing (NLP), given its widespread applicability. However, with the advance of new information technologies and language variation, the contents and methods for PoS-tagging have changed. The majority of Italian existing data for this task originate from standard texts, where language use is far from multifaceted informal real-life situations. Automatic PoS-tagging models trained with such data do not perform reliably on non-standard language, like social media content or language learners’ texts. Our aim is to provide additional training and evaluation data from language learners tagged in Universal Dependencies (UD), as well as testing current automatic PoStagging systems and evaluating their performance on such data. We use a multilingual corpus of young language learners, LEONIDE, to create a tagged gold standard for evaluating UD PoStagging performance on the Italian nonstandard language. With the 3.7 version of Stanza, a Python NLP package, we apply available automatic PoS-taggers, namely ISDT, ParTUT, POSTWITA, TWITTIRÒ and VIT, trained with both standard and non-standard data, on our dataset. Our results show that the above taggers, trained on non-standard data or multilingual Treebanks, can achieve up to 95% of accuracy on multilingual learner data, if combined.
Název v anglickém jazyce
Introducing a Gold Standard Corpus from Young Multilinguals for the Evaluation of Automatic UD-PoS Taggers for Italian
Popis výsledku anglicky
Part-of-speech (PoS) tagging constitutes a common task in Natural Language Processing (NLP), given its widespread applicability. However, with the advance of new information technologies and language variation, the contents and methods for PoS-tagging have changed. The majority of Italian existing data for this task originate from standard texts, where language use is far from multifaceted informal real-life situations. Automatic PoS-tagging models trained with such data do not perform reliably on non-standard language, like social media content or language learners’ texts. Our aim is to provide additional training and evaluation data from language learners tagged in Universal Dependencies (UD), as well as testing current automatic PoStagging systems and evaluating their performance on such data. We use a multilingual corpus of young language learners, LEONIDE, to create a tagged gold standard for evaluating UD PoStagging performance on the Italian nonstandard language. With the 3.7 version of Stanza, a Python NLP package, we apply available automatic PoS-taggers, namely ISDT, ParTUT, POSTWITA, TWITTIRÒ and VIT, trained with both standard and non-standard data, on our dataset. Our results show that the above taggers, trained on non-standard data or multilingual Treebanks, can achieve up to 95% of accuracy on multilingual learner data, if combined.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
8th Italian Conference on Computational Linguistics, CLiC-it 2021
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
CEUR Workshop Proceedings
Místo vydání
Milan, Italy
Místo konání akce
Milan, Italy
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—