Bootstrapping the Annotation of UD Learner Treebanks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8CD8IR7P" target="_blank" >RIV/00216208:11320/25:8CD8IR7P - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198653384&partnerID=40&md5=cccc8dc5beaefe97387ad08737778c1b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85198653384&partnerID=40&md5=cccc8dc5beaefe97387ad08737778c1b</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bootstrapping the Annotation of UD Learner Treebanks
Popis výsledku v původním jazyce
Learner data comes in a variety of formats, making corpora difficult to compare with each other. Universal Dependencies (UD) has therefore been proposed as a replacement for the various ad-hoc annotation schemes. Nowadays, the time-consuming task of building a UD treebank often starts with a round of automatic annotation. The performance of the currently available tools trained on standard language, however, tends to decline substantially upon application to learner text. Grammatical errors play a major role, but a significant performance gap has been observed even between standard test sets and normalized learner essays. In this paper, we investigate how to best bootstrap the annotation of UD learner corpora. In particular, we want to establish whether Target Hypotheses (THs), i.e. grammar-corrected learner sentences, are suitable training data for fine-tuning a parser aimed for original (ungrammatical) L2 material. We perform experiments using English and Italian data from two of the already available UD learner corpora. Our results show manually annotated THs to be highly beneficial and suggest that even automatically parsed sentences of this kind might be helpful, if available in sufficiently large amounts. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Název v anglickém jazyce
Bootstrapping the Annotation of UD Learner Treebanks
Popis výsledku anglicky
Learner data comes in a variety of formats, making corpora difficult to compare with each other. Universal Dependencies (UD) has therefore been proposed as a replacement for the various ad-hoc annotation schemes. Nowadays, the time-consuming task of building a UD treebank often starts with a round of automatic annotation. The performance of the currently available tools trained on standard language, however, tends to decline substantially upon application to learner text. Grammatical errors play a major role, but a significant performance gap has been observed even between standard test sets and normalized learner essays. In this paper, we investigate how to best bootstrap the annotation of UD learner corpora. In particular, we want to establish whether Target Hypotheses (THs), i.e. grammar-corrected learner sentences, are suitable training data for fine-tuning a parser aimed for original (ungrammatical) L2 material. We perform experiments using English and Italian data from two of the already available UD learner corpora. Our results show manually annotated THs to be highly beneficial and suggest that even automatically parsed sentences of this kind might be helpful, if available in sufficiently large amounts. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Workshop Build. Using Comp. Corpora, BUCC LREC-COLING - Proc.
ISBN
978-249381431-9
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
111-117
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—