Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Universal Dependencies for Learner Russian

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AHQXXS2RL" target="_blank" >RIV/00216208:11320/25:HQXXS2RL - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195993096&partnerID=40&md5=d1128b8139d5db74838cdd9f30383b3e" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195993096&partnerID=40&md5=d1128b8139d5db74838cdd9f30383b3e</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Universal Dependencies for Learner Russian

  • Popis výsledku v původním jazyce

    We introduce a pilot annotation of Russian learner data with syntactic dependency relations. The annotation is performed on a subset of sentences from RULEC-GEC and RU-Lang8, two error-corrected Russian learner datasets. We provide manually labeled Universal Dependency (UD) trees for 500 sentence pairs, annotating both the original (source) and the corrected (target) version of each sentence. Further, we outline guidelines for annotating learner Russian data containing non-standard erroneous text and analyze the effect that the individual errors have on the resulting dependency trees. This study should contribute to a wide range of computational and theoretical research directions in second language learning and grammatical error correction. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.

  • Název v anglickém jazyce

    Universal Dependencies for Learner Russian

  • Popis výsledku anglicky

    We introduce a pilot annotation of Russian learner data with syntactic dependency relations. The annotation is performed on a subset of sentences from RULEC-GEC and RU-Lang8, two error-corrected Russian learner datasets. We provide manually labeled Universal Dependency (UD) trees for 500 sentence pairs, annotating both the original (source) and the corrected (target) version of each sentence. Further, we outline guidelines for annotating learner Russian data containing non-standard erroneous text and analyze the effect that the individual errors have on the resulting dependency trees. This study should contribute to a wide range of computational and theoretical research directions in second language learning and grammatical error correction. © 2024 ELRA Language Resource Association: CC BY-NC 4.0.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Jt. Int. Conf. Comput. Linguist., Lang. Resour. Eval., LREC-COLING - Main Conf. Proc.

  • ISBN

    978-249381410-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    17112-17119

  • Název nakladatele

    European Language Resources Association (ELRA)

  • Místo vydání

  • Místo konání akce

    Torino, Italia

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku