Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

VALICO-UD: Treebanking an Italian Learner Corpus in Universal Dependencies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AL5DE86QG" target="_blank" >RIV/00216208:11320/22:L5DE86QG - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.openedition.org/ijcol/1007" target="_blank" >https://journals.openedition.org/ijcol/1007</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4000/ijcol.1007" target="_blank" >10.4000/ijcol.1007</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    VALICO-UD: Treebanking an Italian Learner Corpus in Universal Dependencies

  • Popis výsledku v původním jazyce

    This article describes an ongoing project for the development of a novel Italian treebank in Universal Dependencies format: VALICO-UD. It consists of texts written by Italian L2 learners of different mother tongues (German, French, Spanish and English) drawn from VALICO, an Italian learner corpus elicited by comic strips. Aiming at building a parallel treebank currently missing for Italian L2, comparable with those exploited in Natural Language Processing tasks, we associated each learner sentence with a target hypothesis (i.e. a corrected version of the learner sentence written by an Italian native speaker), which is in turn annotated in Universal Dependencies. The treebank VALICO-UD is composed of 237 texts written by non-native speakers of Italian (2,234 sentences) and the related target hypotheses, all automatically annotated using UDPipe. A portion of this resource (36 texts corresponding to 398 learner sentences and related target hypotheses)—firstly released on May 2021 in the Universal Dependencies repository—is associated with error annotation and the automatic output is fully manually checked. In this article, we focus especially on the challenges addressed in treebanking a resource composed of learner texts. In addition, we report on a preliminary data exploration that makes use of three quantitative measures for assessing the quality of the data and for better understanding the role that this resource can play in tasks lying at the intersection of Computational Linguistics and learner corpus studies.

  • Název v anglickém jazyce

    VALICO-UD: Treebanking an Italian Learner Corpus in Universal Dependencies

  • Popis výsledku anglicky

    This article describes an ongoing project for the development of a novel Italian treebank in Universal Dependencies format: VALICO-UD. It consists of texts written by Italian L2 learners of different mother tongues (German, French, Spanish and English) drawn from VALICO, an Italian learner corpus elicited by comic strips. Aiming at building a parallel treebank currently missing for Italian L2, comparable with those exploited in Natural Language Processing tasks, we associated each learner sentence with a target hypothesis (i.e. a corrected version of the learner sentence written by an Italian native speaker), which is in turn annotated in Universal Dependencies. The treebank VALICO-UD is composed of 237 texts written by non-native speakers of Italian (2,234 sentences) and the related target hypotheses, all automatically annotated using UDPipe. A portion of this resource (36 texts corresponding to 398 learner sentences and related target hypotheses)—firstly released on May 2021 in the Universal Dependencies repository—is associated with error annotation and the automatic output is fully manually checked. In this article, we focus especially on the challenges addressed in treebanking a resource composed of learner texts. In addition, we report on a preliminary data exploration that makes use of three quantitative measures for assessing the quality of the data and for better understanding the role that this resource can play in tasks lying at the intersection of Computational Linguistics and learner corpus studies.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IJCoL. Italian Journal of Computational Linguistics

  • ISSN

    2499-4553

  • e-ISSN

    2214-6326

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    31

  • Strana od-do

    85-115

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus