Developing a Part-of-speech Tagger for Diplomatically Edited Old Irish Text
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AQQ3TU6K3" target="_blank" >RIV/00216208:11320/25:QQ3TU6K3 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195193333&partnerID=40&md5=43b902f16f8a89b78d19f3404f914d15" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195193333&partnerID=40&md5=43b902f16f8a89b78d19f3404f914d15</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Developing a Part-of-speech Tagger for Diplomatically Edited Old Irish Text
Popis výsledku v původním jazyce
POS-tagging is typically considered a fundamental text preprocessing task, with a variety of downstream NLP tasks and techniques being dependent on the availability of POS-tagged corpora. As such, POS-taggers are important precursors to further NLP tasks, and their accuracy can impact the potential accuracy of these dependent tasks. While a variety of POS-tagging methods have been developed which work well with modern languages, historical languages present orthographic and editorial challenges which require special attention. The effectiveness of POS-taggers developed for modern languages is reduced when applied to Old Irish, with its comparatively complex orthography and morphology. This paper examines some of the obstacles to POS-tagging Old Irish text, and shows that inconsistencies between extant annotated corpora reduce the quantity of data available for use in training POS-taggers. The development of a multi-layer neural network model for POS-tagging Old Irish text is described, and an experiment is detailed which demonstrates that this model outperforms a variety of off-the-shelf POS-taggers. Moreover, this model sets a new benchmark for POS-tagging diplomatically edited Old Irish text. © 2024 ELRA Language Resources Association: CC BY-NC 4.0.
Název v anglickém jazyce
Developing a Part-of-speech Tagger for Diplomatically Edited Old Irish Text
Popis výsledku anglicky
POS-tagging is typically considered a fundamental text preprocessing task, with a variety of downstream NLP tasks and techniques being dependent on the availability of POS-tagged corpora. As such, POS-taggers are important precursors to further NLP tasks, and their accuracy can impact the potential accuracy of these dependent tasks. While a variety of POS-tagging methods have been developed which work well with modern languages, historical languages present orthographic and editorial challenges which require special attention. The effectiveness of POS-taggers developed for modern languages is reduced when applied to Old Irish, with its comparatively complex orthography and morphology. This paper examines some of the obstacles to POS-tagging Old Irish text, and shows that inconsistencies between extant annotated corpora reduce the quantity of data available for use in training POS-taggers. The development of a multi-layer neural network model for POS-tagging Old Irish text is described, and an experiment is detailed which demonstrates that this model outperforms a variety of off-the-shelf POS-taggers. Moreover, this model sets a new benchmark for POS-tagging diplomatically edited Old Irish text. © 2024 ELRA Language Resources Association: CC BY-NC 4.0.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Workshop Lang. Technol. Hist. Anc. Lang., LT4HALA LREC-COLING - Workshop Proc.
ISBN
978-249381446-3
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
11-21
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Torino, Italia
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—