Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spoken Spanish PoS tagging: gold standard dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AMF98BC5I" target="_blank" >RIV/00216208:11320/25:MF98BC5I - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197288516&doi=10.1007%2fs10579-024-09751-x&partnerID=40&md5=48167acf48572b979c669b95b43a9a03" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197288516&doi=10.1007%2fs10579-024-09751-x&partnerID=40&md5=48167acf48572b979c669b95b43a9a03</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10579-024-09751-x" target="_blank" >10.1007/s10579-024-09751-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spoken Spanish PoS tagging: gold standard dataset

  • Popis výsledku v původním jazyce

    The development of a benchmark for part-of-speech (PoS) tagging of spoken dialectal European Spanish is presented, which will serve as the foundation for a future treebank. The benchmark is constructed using transcriptions of the Corpus Oral y Sonoro del Español Rural (COSER;“Audible corpus of spoken rural Spanish”) and follows the Universal Dependencies project guidelines. We describe the methodology used to create a gold standard, which serves to evaluate different state-of-the-art PoS taggers (spaCy, Stanza NLP, and UDPipe), originally trained on written data and to fine-tune and evaluate a model for spoken Spanish. It is shown that the accuracy of these taggers drops from 0.98-0.99 to 0.94-0.95 when tested on spoken data. Of these three taggers, the spaCy’s trf (transformers) and Stanza NLP models performed the best. Finally, the spaCy trf model is fine-tuned using our gold standard, which resulted in an accuracy of 0.98 for coarse-grained tags (UPOS) and 0.97 for fine-grained tags (FEATS). Our benchmark will enable the development of more accurate PoS taggers for spoken Spanish and facilitate the construction of a treebank for European Spanish varieties. © The Author(s) 2024.

  • Název v anglickém jazyce

    Spoken Spanish PoS tagging: gold standard dataset

  • Popis výsledku anglicky

    The development of a benchmark for part-of-speech (PoS) tagging of spoken dialectal European Spanish is presented, which will serve as the foundation for a future treebank. The benchmark is constructed using transcriptions of the Corpus Oral y Sonoro del Español Rural (COSER;“Audible corpus of spoken rural Spanish”) and follows the Universal Dependencies project guidelines. We describe the methodology used to create a gold standard, which serves to evaluate different state-of-the-art PoS taggers (spaCy, Stanza NLP, and UDPipe), originally trained on written data and to fine-tune and evaluate a model for spoken Spanish. It is shown that the accuracy of these taggers drops from 0.98-0.99 to 0.94-0.95 when tested on spoken data. Of these three taggers, the spaCy’s trf (transformers) and Stanza NLP models performed the best. Finally, the spaCy trf model is fine-tuned using our gold standard, which resulted in an accuracy of 0.98 for coarse-grained tags (UPOS) and 0.97 for fine-grained tags (FEATS). Our benchmark will enable the development of more accurate PoS taggers for spoken Spanish and facilitate the construction of a treebank for European Spanish varieties. © The Author(s) 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Language Resources and Evaluation

  • ISSN

    1574-020X

  • e-ISSN

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    1-30

  • Kód UT WoS článku

    001260434000003

  • EID výsledku v databázi Scopus

    2-s2.0-85197288516