Information-theoretic locality properties of natural language
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10427146" target="_blank" >RIV/00216208:11320/19:10427146 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.aclweb.org/anthology/W19-7902" target="_blank" >https://www.aclweb.org/anthology/W19-7902</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Information-theoretic locality properties of natural language
Popis výsledku v původním jazyce
I present theoretical arguments and new empirical evidence for an information-theoretic principleof word order: information locality, the idea that words that strongly predict each other shouldbe close to each other in linear order. I show that information locality can be derived underthe assumption that natural language is a code that enables efficient communication while minimizinginformation-processing costs involved in online language comprehension, using recentpsycholinguistic theories to characterize those processing costs information-theoretically. I arguethat information locality subsumes and extends the previously-proposed principle of dependencylength minimization (DLM), which has shown great explanatory power for predicting word orderin many languages. Finally, I show corpus evidence that information locality has improved explanatorypower over DLM in two domains: in predicting which dependencies will have shorterand longer lengths across 50 languages, and in predicting the preferred order of adjectives inEnglish.
Název v anglickém jazyce
Information-theoretic locality properties of natural language
Popis výsledku anglicky
I present theoretical arguments and new empirical evidence for an information-theoretic principleof word order: information locality, the idea that words that strongly predict each other shouldbe close to each other in linear order. I show that information locality can be derived underthe assumption that natural language is a code that enables efficient communication while minimizinginformation-processing costs involved in online language comprehension, using recentpsycholinguistic theories to characterize those processing costs information-theoretically. I arguethat information locality subsumes and extends the previously-proposed principle of dependencylength minimization (DLM), which has shown great explanatory power for predicting word orderin many languages. Finally, I show corpus evidence that information locality has improved explanatorypower over DLM in two domains: in predicting which dependencies will have shorterand longer lengths across 50 languages, and in predicting the preferred order of adjectives inEnglish.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů