Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10412333" target="_blank" >RIV/00216208:11320/20:10412333 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14740/20:00117383
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n7Ubkdu1YB" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=n7Ubkdu1YB</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.pmatsci.2020.100667" target="_blank" >10.1016/j.pmatsci.2020.100667</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy
Popis výsledku v původním jazyce
Everybody dreams to have X-ray eyes and discover the most invisible secrets of the world around us. X-rays can probe matter (depth resolved) down to atomic resolution, if relying on diffraction-based techniques. An X-ray diffraction pattern may contain information over many length scales (atomic structure, microstructure, mesostructure). This peculiarity justifies the well-recognized impact of several X-ray diffraction-based techniques to diverse fields of research. On the other hand, X-ray spectroscopies (both in absorption and in emission) provide insights on the electronic structure and, exploiting element selectivity and local environment, can complement or even replace scattering techniques for diluted systems and amorphous materials. Herein, we provide a theoretical foundation which spans from very basic concepts, through well-known techniques, with applications to nanomaterials research. An increasing level of material complexity is explored: size and shape analysis of nanoparticles dispersed in solution or single nanostructures localized onto surfaces; local morphology/strain analysis of nanostructured surfaces; average defects analysis of stacking faulted nanocrystals; regular 2D and 3D lattices of self-assembled nanocrystals; clusters of nanocrystals without any nanoscale lattice order, standing alone as isolated objects or embedded in tenths-of-mu m-thick polymers (here coherent and focused X-rays are mandatory to explore the spatial inhomogeneity and lattice (in)coherence of the materials).
Název v anglickém jazyce
Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy
Popis výsledku anglicky
Everybody dreams to have X-ray eyes and discover the most invisible secrets of the world around us. X-rays can probe matter (depth resolved) down to atomic resolution, if relying on diffraction-based techniques. An X-ray diffraction pattern may contain information over many length scales (atomic structure, microstructure, mesostructure). This peculiarity justifies the well-recognized impact of several X-ray diffraction-based techniques to diverse fields of research. On the other hand, X-ray spectroscopies (both in absorption and in emission) provide insights on the electronic structure and, exploiting element selectivity and local environment, can complement or even replace scattering techniques for diluted systems and amorphous materials. Herein, we provide a theoretical foundation which spans from very basic concepts, through well-known techniques, with applications to nanomaterials research. An increasing level of material complexity is explored: size and shape analysis of nanoparticles dispersed in solution or single nanostructures localized onto surfaces; local morphology/strain analysis of nanostructured surfaces; average defects analysis of stacking faulted nanocrystals; regular 2D and 3D lattices of self-assembled nanocrystals; clusters of nanocrystals without any nanoscale lattice order, standing alone as isolated objects or embedded in tenths-of-mu m-thick polymers (here coherent and focused X-rays are mandatory to explore the spatial inhomogeneity and lattice (in)coherence of the materials).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC19-10799J" target="_blank" >GC19-10799J: Studium růstové kinetiky multiferoických komplexních oxidů metodami rtg rozptylu in-situ při pulsní laserové depozici</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Progress in Materials Science
ISSN
0079-6425
e-ISSN
—
Svazek periodika
112
Číslo periodika v rámci svazku
červenec
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
70
Strana od-do
100667
Kód UT WoS článku
000536816300006
EID výsledku v databázi Scopus
2-s2.0-85082709738