Detailed Analysis and Optimization of CUDA K-means Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414260" target="_blank" >RIV/00216208:11320/20:10414260 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/abs/10.1145/3404397.3404426" target="_blank" >https://dl.acm.org/doi/abs/10.1145/3404397.3404426</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3404397.3404426" target="_blank" >10.1145/3404397.3404426</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detailed Analysis and Optimization of CUDA K-means Algorithm
Popis výsledku v původním jazyce
K-means is one of the most frequently used algorithms for unsupervised clustering data analysis. Individual steps of the k-means algorithm include nearest neighbor finding, efficient distance computation, and cluster-wise reduction, which may be generalized to many other purposes in data analysis, visualization, and machine learning. Efficiency of the available implementations of k-means computation steps therefore directly affect many other applications. In this work, we examine the performance limits in the context of modern massively parallel GPU accelerators. Despite the existence of many published papers on this topic, we have found that crucial performance aspects of the GPU implementations remain unaddressed, including the optimizations for memory bandwidth, cache limits, and workload dispatching on problem instances of varying cluster count, dataset size, and dimensionality. We present a detailed analysis of individual computation steps and propose several optimizations that improve the overall performance on contemporary GPU architectures. Our open-source prototype exhibits significant speedup over the current state-of-the-art implementations in virtually all practical scenarios.
Název v anglickém jazyce
Detailed Analysis and Optimization of CUDA K-means Algorithm
Popis výsledku anglicky
K-means is one of the most frequently used algorithms for unsupervised clustering data analysis. Individual steps of the k-means algorithm include nearest neighbor finding, efficient distance computation, and cluster-wise reduction, which may be generalized to many other purposes in data analysis, visualization, and machine learning. Efficiency of the available implementations of k-means computation steps therefore directly affect many other applications. In this work, we examine the performance limits in the context of modern massively parallel GPU accelerators. Despite the existence of many published papers on this topic, we have found that crucial performance aspects of the GPU implementations remain unaddressed, including the optimizations for memory bandwidth, cache limits, and workload dispatching on problem instances of varying cluster count, dataset size, and dimensionality. We present a detailed analysis of individual computation steps and propose several optimizations that improve the overall performance on contemporary GPU architectures. Our open-source prototype exhibits significant speedup over the current state-of-the-art implementations in virtually all practical scenarios.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICPP '20: Proceedings of the 49th International Conference on Parallel Processing
ISBN
978-1-4503-8816-0
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
—
Název nakladatele
ACM
Místo vydání
New York, NY, USA
Místo konání akce
Edmonton AB Canada
Datum konání akce
17. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—