EPPA FOR TWO-GRAPHS AND ANTIPODAL METRIC SPACES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10414425" target="_blank" >RIV/00216208:11320/20:10414425 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LEw1pquAfS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LEw1pquAfS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/14872" target="_blank" >10.1090/proc/14872</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EPPA FOR TWO-GRAPHS AND ANTIPODAL METRIC SPACES
Popis výsledku v původním jazyce
We prove that the class of finite two-graphs has the extension property for partial automorphisms (EPPA, or Hrushovski property), thereby answering a question of Macpherson. In other words, we show that the class of graphs has the extension property for switching automorphisms. We present a short, self-contained, purely combinatorial proof which also proves EPPA for the class of integer-valued antipodal metric spaces of diameter 3, answering a question of Aranda et al. The class of two-graphs is an important new example which behaves differently from all the other known classes with EPPA: Two-graphs do not have the amalgamation property with automorphisms (APA), their Ramsey expansion has to add a graph, it is not known if they have coherent EPPA, and even EPPA itself cannot be proved using the Herwig-Lascar theorem.
Název v anglickém jazyce
EPPA FOR TWO-GRAPHS AND ANTIPODAL METRIC SPACES
Popis výsledku anglicky
We prove that the class of finite two-graphs has the extension property for partial automorphisms (EPPA, or Hrushovski property), thereby answering a question of Macpherson. In other words, we show that the class of graphs has the extension property for switching automorphisms. We present a short, self-contained, purely combinatorial proof which also proves EPPA for the class of integer-valued antipodal metric spaces of diameter 3, answering a question of Aranda et al. The class of two-graphs is an important new example which behaves differently from all the other known classes with EPPA: Two-graphs do not have the amalgamation property with automorphisms (APA), their Ramsey expansion has to add a graph, it is not known if they have coherent EPPA, and even EPPA itself cannot be proved using the Herwig-Lascar theorem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Teorie modelů a extrémální kombinatorika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Svazek periodika
148
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1901-1915
Kód UT WoS článku
000521585500007
EID výsledku v databázi Scopus
2-s2.0-85083093374