All those EPPA classes (strengthenings of the Herwig-Lascar theorem)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454164" target="_blank" >RIV/00216208:11320/22:10454164 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GTX0QcE~oF" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GTX0QcE~oF</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/8654" target="_blank" >10.1090/tran/8654</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
All those EPPA classes (strengthenings of the Herwig-Lascar theorem)
Popis výsledku v původním jazyce
Let A be a finite structure. We say that a finite structure B is an extension property for partial automorphisms (EPPA)-witness for A if it contains A as a substructure and every isomorphism of substructures of A extends to an automorphism of B. Class C of finite structures has the EPPA (also called the Hrushovski property) if it contains an EPPA-witness for every structure in C. We develop a systematic framework for combinatorial constructions of EPPA-witnesses satisfying additional local properties and thus for proving EPPA for a given class C. Our constructions are elementary, self-contained and lead to a common strengthening of the Herwig-Lascar theorem on EPPA for relational classes defined by forbidden homomorphisms, the Hodkinson-Otto theorem on EPPA for relational free amalgamation classes, its strengthening for unary functions by Evans, Hubička and Nešetřil and their coherent variants by Siniora and Solecki. We also prove an EPPA analogue of the main results of J. Hubička and J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms), thereby establishing a common framework for proving EPPA and the Ramsey property. There are numerous applications of our results, we include a solution of a problem related to a class constructed by the Hrushovski predimension construction. We also characterize free amalgamation classes of finite Γ_L-structures with relations and unary functions which have EPPA.
Název v anglickém jazyce
All those EPPA classes (strengthenings of the Herwig-Lascar theorem)
Popis výsledku anglicky
Let A be a finite structure. We say that a finite structure B is an extension property for partial automorphisms (EPPA)-witness for A if it contains A as a substructure and every isomorphism of substructures of A extends to an automorphism of B. Class C of finite structures has the EPPA (also called the Hrushovski property) if it contains an EPPA-witness for every structure in C. We develop a systematic framework for combinatorial constructions of EPPA-witnesses satisfying additional local properties and thus for proving EPPA for a given class C. Our constructions are elementary, self-contained and lead to a common strengthening of the Herwig-Lascar theorem on EPPA for relational classes defined by forbidden homomorphisms, the Hodkinson-Otto theorem on EPPA for relational free amalgamation classes, its strengthening for unary functions by Evans, Hubička and Nešetřil and their coherent variants by Siniora and Solecki. We also prove an EPPA analogue of the main results of J. Hubička and J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms), thereby establishing a common framework for proving EPPA and the Ramsey property. There are numerous applications of our results, we include a solution of a problem related to a class constructed by the Hrushovski predimension construction. We also characterize free amalgamation classes of finite Γ_L-structures with relations and unary functions which have EPPA.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-13685Y" target="_blank" >GJ18-13685Y: Teorie modelů a extrémální kombinatorika</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Svazek periodika
375
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
67
Strana od-do
7601-7667
Kód UT WoS článku
000830695900001
EID výsledku v databázi Scopus
2-s2.0-85139565443