Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fractional coloring of planar graphs of girth five

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10416991" target="_blank" >RIV/00216208:11320/20:10416991 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=w.0uC6mv_r" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=w.0uC6mv_r</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/18M1214068" target="_blank" >10.1137/18M1214068</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fractional coloring of planar graphs of girth five

  • Popis výsledku v původním jazyce

    A graph G is (a : b)-colorable if there exists an assignment of b-element subsets of {1, ..., a} to vertices of G such that sets assigned to adjacent vertices are disjoint. We first show that for every triangle-free planar graph G and a vertex x is an element of V(G), the graph G has a set coloring phi by subsets of {1, ..., 6} such that vertical bar phi(v)vertical bar &gt;= 2 for v is an element of V(G) and vertical bar phi(x)vertical bar = 3. As a corollary, every triangle-free planar graph on n vertices is (6n : 2n + 1)-colorable. We further use this result to prove that for every Delta, there exists a constant M-Delta such that every planar graph G of girth at least five and maximum degree Delta is (6M(Delta) : 2M(Delta) + 1)-colorable. Consequently, planar graphs of girth at least five with bounded maximum degree Delta have fractional chromatic number at most 3 -3/2M(Delta)+1.

  • Název v anglickém jazyce

    Fractional coloring of planar graphs of girth five

  • Popis výsledku anglicky

    A graph G is (a : b)-colorable if there exists an assignment of b-element subsets of {1, ..., a} to vertices of G such that sets assigned to adjacent vertices are disjoint. We first show that for every triangle-free planar graph G and a vertex x is an element of V(G), the graph G has a set coloring phi by subsets of {1, ..., 6} such that vertical bar phi(v)vertical bar &gt;= 2 for v is an element of V(G) and vertical bar phi(x)vertical bar = 3. As a corollary, every triangle-free planar graph on n vertices is (6n : 2n + 1)-colorable. We further use this result to prove that for every Delta, there exists a constant M-Delta such that every planar graph G of girth at least five and maximum degree Delta is (6M(Delta) : 2M(Delta) + 1)-colorable. Consequently, planar graphs of girth at least five with bounded maximum degree Delta have fractional chromatic number at most 3 -3/2M(Delta)+1.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-04611S" target="_blank" >GA17-04611S: Ramseyovské aspekty barvení grafů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    538-555

  • Kód UT WoS článku

    000546886700026

  • EID výsledku v databázi Scopus

    2-s2.0-85091395984